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Why are diffusions important?

Diffusion models crop up all over the place in scientific modelling:
Molecular models of interacting particles
Stock prices in perfect financial markets
Communications systems with noise
Neurophysiological activities with disturbances
Ecological modelling
Population genetics
Fluid flows
Queueing and network theory
Learning theory
...
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Diffusion model
The time-evolution of a genetic variant, or allele, is well
approximated by a diffusion process on the interval [0,1].

Time 

Allele 
frequency 

1 

0 

Wright-Fisher SDE

dXt = µθ(Xt )dt +
√

Xt (1− Xt )dWt , X0 = x , t ≥ 0.

The infinitesimal drift, µθ(x), encapsulates directional forces such as
natural selection, migration, mutation, . . .
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Population genetic Motivation I: Demographic inference

Given a sample of DNA sequences obtained in the present-day,
what can we infer about the demographic history of the population?

Example (Gutenkunst et al., 2009)

agreement seen is notable because our demographic inference
used no LD information in building and fitting the model. This
LD comparison thus serves as independent validation of both our
model and bootstrap simulations. We also asked whether the
likelihood L found in the real data fit is atypical of fits to simulated
data. Out of fits to 100 simulated data sets, 2 produced a smaller
likelihood (worse fit) than the real data fit (Figure 2E), yielding a p-
value of <0.02. One can craft examples in which a likelihood-
based goodness-of-fit test fails to exclude very poor models [50].
Thus we also applied Pearson’s x2 goodness-of-fit test, a more
robust and standard method for data that is in Poisson-distributed
bins, such as the AFS [36]. In our case, we must use our
parametric bootstraps to assess the significance of the sum-of-
squared-residuals test statistic X 2, because many entries in the
AFS are small and because they are not strictly independent.
Figure 2E shows the bootstrap-derived empirical distribution of
X 2. Two of the bootstraps yielded a larger X 2 (worse fit) than the
real data fit, giving a p-value of <0.02, identical to that from the
likelihood-based test. (The two simulations that yield a higher X 2

than the real fit are not the same two that yield a lower L,
suggesting that these tests are somewhat independent.) In some
cases specific frequency classes of SNPs, such as rare alleles, may
be of particular interest. In Supplementary Table 5 in Text S1, we
provide comparisons of the joint distribution of rare alleles seen in
the data with that from our simulations. These comparisons
indicate that our model also reproduces well this interesting region
of the frequency spectrum. Finally, in Figure 4 we compare the
model and data using larger bins of SNPs specific to particular
populations or segregating at high or low frequency. In all cases
the model agrees within the uncertainty of the bootstrapped data.
Taken together, these tests suggest that our model provides a

reasonable, though not complete, explanation of the data, lending
credence to our demographic estimates.

The inferred contemporary migration parameters (mAF{EU ,
mAF{AS and mEU{AS ) are small, raising the question as to
whether they are statistically distinguishable from zero. Figure 2F
shows that the improvement in fit to the real data upon adding
contemporary migration to the model is much larger than would
be expected if there were no such migration, implying that the
contemporary migration we infer is highly statistically significant.
Omitting ancient migration (mAF{B) reduced fit quality even
more, indicating that the data also demand substantial ancient
migration (data not shown).

Settling the New World
To study the settlement of the Americas, we used the previously

considered 22 CEU and 12 CHB individuals, plus an additional
22 individuals of Mexican descent sampled in Los Angeles (MXL).
Data were processed as in our Out of Africa analysis, yielding
13,290 segregating SNPs from effectively 4.22 Mb of sequence.
Figure 3A shows the resulting AFS, while Figure 3C shows the
marginal spectra.

A model in which the CEU and CHB diverge from an
equilibrium population did not reproduce the AFS well (Supple-
mentary Figure 13 in Text S1). Interestingly, a model allowing a
prior size change in the ancestral population better fit the AFS but
very poorly fit the observed LD decay (Supplementary Figure 13
in Text S1). Thus, reproducing the AFS does not guarantee
reproduction of LD, at least given a historically unrealistic model.
To develop a more realistic model, we endeavored to include the
effects of Eurasian divergence from and migration with the African
population. Computational limits precluded us from considering

Figure 2. Out of Africa analysis. (A) AFS for the YRI, CEU, and CHB populations. The color scale is as in (C). (B) Illustration of the model we fit, with
the 14 free parameters labeled. (C) Marginal spectra for each pair of populations. The top row is the data, and the second is the maximum-likelihood
model. The third row shows the Anscombe residuals [61] between model and data. Red or blue residuals indicate that the model predicts too many
or too few alleles in a given cell, respectively. (D) The observed decay of linkage disequilibrium (black lines) is qualitatively well-matched by our
simulated data sets (colored lines). (E) Goodness-of-fit tests based on the likelihood L and Pearson’s X 2 statistic both indicate that our model is a
reasonable, though incomplete description of the data. In both plots, the red line results from fitting the real data and the histogram from fits to
simulated data. Poorer fits lie to the right (lower L and higher X 2). (F) The improvement in likelihood from including contemporary migration in the
real data fit (red line) is much greater than expected from fits to simulated data generated without contemporary migration (histogram). This
indicates that the data contain a strong signal of contemporary migration.
doi:10.1371/journal.pgen.1000695.g002

Demography from Multidimensional SNP Data
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all 4 populations simultaneously, so we dropped the African
population from the simulation upon MXL divergence (Figure 3B).

Table 2 records the maximum-likelihood parameter values
inferred for this model. Because this fit did not include African
data, we could not reliably infer demographic parameters
involving the African population. Thus, for this point estimate
we fixed the Africa-related parameters NA, NAF , NB, mAF{B,
mAF{EU , mAF{AS , TAF and TB to their maximum-likelihood
values from Table 1. Figure 3C compares the model and data
spectra. The residuals show little correlation, with the possible
exception that the model may underestimate the number of high-
frequency segregating alleles.

Parameter confidence intervals are reported in Table 2. To
account for our uncertainty in those parameters derived from the
Out of Africa fit, for each conventional bootstrap fit we used a set
of Africa-related parameters randomly chosen from the sets
yielded by our Out of Africa conventional bootstrap. For the
parametric bootstrap, we used the maximum-likelihood point
estimates. Again, we see that the conventional bootstrap
confidence intervals are comparable to, although slightly wider
than, the parametric bootstrap intervals. Several parameters in this
analysis have direct correspondence with our Out of Africa
analysis. Of particular note, the confidence intervals for the CEU-
CHB divergence time TEU{AS overlap.

In assessing goodness of fit, Figure 3D shows that this model
does indeed reproduce the observed pattern of LD decay. Unlike
in our Out of Africa analysis, however, here the LD decay was
used to choose the form of the model (although not its parameter
values), so this is not a completely independent assessment of fit.
Of our 100 parametric bootstrap fits, 13 yielded a worse likelihood
than the real fit (Figure 3E), for a p-value of <0.13. Applying
Pearson’s x2 test, we find that 23 of 100 bootstrap fits yield a
higher (worse) X 2 than the fit to the real data, for a p-value of
<0.23, similar to that of the likelihood analysis. Comparing
distributions of rare alleles, our model typically reproduces the

observed distribution well, although it may be somewhat
overestimating the proportion of alleles that are rare or absent
in the CHB population (Supplementary Table 7 in Text S1). In
sum, our model appears to be a reasonable explanation of this
data, somewhat better than in our Out of Africa analysis.

An essential feature of the Mexican-American individuals
considered here is that they are typically admixed from Native
American and European ancestors. The <50% average European
admixture proportion we inferred for the MXL population is
consistent with previous estimates for Los Angeles Latinos [51].
We have no direct data from the Native American populations
ancestral to MXL, but our model does account for their
divergence from East Asia. A model neglecting this divergence
(by setting TMX to zero) fit the data substantially worse and yields
an unrealistically high average European admixture proportion
into MXL of 68%.

Not only are Mexican-American individuals admixed, their
admixture proportions also vary, and this subtlety is not directly
accounted for in our analysis. To assess its effect on our results, we
first roughly estimated the ancestry proportion of each individual,
using essentially a maximum-likelihood version [18] of the
algorithm used in structure [52] (Text S1). (Methods based on
‘‘admixture LD’’, which identify breakpoints between regions of
Native American and European ancestry, may be more powerful
[53]. However, the strategy used by the EGP of sequencing widely
spaced genes will resolve few of these breakpoints, limiting the
applicability of these methods.) We then performed additional
parametric bootstrap analyses, using simulations with a distribu-
tion of individual ancestry chosen to mimic that seen in the data
and, to further test the method, with an extremely wide
distribution. These simulations showed that variation in individual
ancestry does not bias our parameter inferences (Supplementary
Figure 19 in Text S1). Remarkably, it does not even change our
statistical power. This is evidenced by the fact that these bootstrap
simulations yielded confidence intervals identical to our original

Figure 3. Settlement of the New World analysis. As in Figure 2, (A) is the data, (B) is a schematic of the model we fit, (C) compares the data and
model AFS, and (D) compares LD. (E) The fit of our model to the real data is not atypical of fits to simulated data. (F) The improvement in real data fit
upon including CHB-MXL migration (red line) is very typical of the improvement in fits to simulated data without CHB-MXL migration. Thus we have
no evidence for CHB-MXL migration after divergence.
doi:10.1371/journal.pgen.1000695.g003

Demography from Multidimensional SNP Data
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Population genetic Motivation II: Time-series analysis of selection

Given a sample of genetic data obtained over several generations,
what can we infer about the strength of natural selection?

Example (Biston betulaeria; Mathieson & McVean, 2013)

Finally we consider other data sets for which our
methods could provide useful analysis. Ecological data sets
about the spatial spread of alleles are the most obvious
example, for example, data about the spread of drug
resistance alleles in pathogens or vectors. Another interest-
ing area, where data are just starting to become available, is
the analysis of ancient DNA to learn about the recent
evolution of humans and other species. In principle,
relatively little data would be required to make inference
in this setting, the critical requirement being that sampling
density is sufficient to observe the frequency trajectory at
intermediate values. Finally we note that our methods are
very general in scope and could be applied not only to
genetic data, but to the spread of any variation in space. We
could use exactly the same techniques to analyze the spread
of invasive species in a new ecosystem or the spread of
cultural variation in a population.
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Inference from diffusion processes
Like many interesting diffusions, the transition function of the
Wright-Fisher diffusion is unknown.

Inference typically proceeds by
1 Model-discretization such as an Euler approximation:

Xt+dt | (Xt = z) ∼ N (µθ(z)dt , σ2(z)dt),

2 . . . followed by (sequential) Monte Carlo simulation (or numerical
solution of Kolmogorov PDEs, or spectral expansions, . . . )

But—discretization introduces a bias we would like to remove.

Three sentence summary
There exist so-called exact algorithms for simulating diffusions
without discretization error, even if the transition density is
unknown.
They can perform poorly when there are entrance boundaries.
I will outline how to fix these problems.
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Exact algorithm (EA)—one-dimensional bridge version

Goal: return exact bridge samples from the one-dimensional
diffusion X = (Xt : t ≥ 0) on R satisfying

dXt = µθ(Xt )dt + σ(Xt )dWt , X0 = x , 0 ≤ t ≤ T .

1 Reduce the problem to unit diffusion coefficient via the Lamperti
transform Xt 7→ Yt :

Yt :=

∫ Xt 1
σ(u)

du,

so now we work with

dYt = αθ(Yt )dt + dWt , Y0 = y , 0 ≤ t ≤ T .
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dYt = αθ(Yt )dt + dBt , Y0 = y , 0 ≤ t ≤ T .

Exact algorithm (EA)
2 Now we can consider a rejection algorithm using Brownian

bridge paths as candidates.
If Qy is the target law (of Y ) and Wy is the law of a Brownian
motion then we need

dQy

dWy
(Y )

= exp

{∫ T

0
αθ(Yt )dYt −

1
2

∫ T

0
α2
θ(Yt )dt

}

to provide the rejection probability

, by the Girsanov theorem.

Such a rejection algorithm is impossible: it requires simulation
of complete (infinite-dimensional) Brownian sample paths!
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dYt = αθ(Yt )dt + dBt , Y0 = y , 0 ≤ t ≤ T .

Exact algorithm (EA)
3 Key observation: The Radon-Nikodým derivative can be put in

the form

dQy

dWy
(Y ) ∝ exp

{
−
∫ T

0
φ(Ys)ds

}
≤ 1,

where φ(·) := 1
2 [α2

θ(·) + α′θ(·)] + C.

Assume we can arrange for φ ≥ 0. Then the right-hand side is
the probability that a Poisson point process of unit rate on
[0,T ]× [0,∞) has no points under the graph of t 7→ φ(Ys).
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dQy
dWy

(Y ) ∝ exp
{
−
∫ T

0 φ(Ys)ds
}
≤ 1.

Exact algorithm (EA)
4 A proposed Brownian

path should be
rejected if a simulated
Poisson point process
has any points under
its graph.

0 T
0

t

φ(Y
t
)
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Retrospective sampling

Exact algorithm (EA) for simulating a bridge from Y0 to YT

1 Simulate a Brownian bridge (Yt )0≤t≤T from Y0 to YT .

2 Simulate a Poisson point process of unit rate on [0,T ]× [0,∞).
3 Accept if all points are in the epigraph of t 7→ φ(Yt ), otherwise

return to 1.
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Retrospective sampling
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Exact algorithm (EA1); Beskos & Roberts (2005)

1 Simulate a Poisson point process on [0,T ]× [0,K ].
2 Simulate the Brownian bridge at the times of the Poisson points.
3 If any of the former are beneath any of the latter, return to 1.

0 T
0

K

t

φ(Y
t
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Exact algorithm (EA)

Output of the algorithm is a set of skeleton points of the bridge.
Any further points can be filled in by further draws from the
Brownian bridge—no further reference to the target law, Qy , is
necessary!

φ(·) =
1
2

[α2
θ(·) + α′θ(·)] + C.

There have been many further refinements to this algorithm
(multidimensions, jumps, killing, reflection, . . . ):
Beskos et al. (2006, 2008, 2012), Casella & Roberts (2008, 2011),
Chen & Huang (2013), Étoré & Martinez (2013), Giesecke & Smelov
(2013), Gonçalves & Roberts (2013), Mousavi & Glynn (2013),
Blanchet & Murthy (2014), Pollock et al. (2014).

In all cases the function φ is important.
The assumption φ ≤ K is restrictive, but it can in fact be relaxed
(“EA2”, Beskos et al., 2006).
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Chen & Huang (2013), Étoré & Martinez (2013), Giesecke & Smelov
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Exact algorithm 2 (EA2); Beskos et al. (2006)
More realistic is that φ is well behaved in one direction:

lim sup
u→∞

φ(u) <∞.

Example: Logistic growth with noise (Beskos et al., 2006)

dXt = θXt (1− Xt )dt + XtdBt , X0 = x > 0, 0 ≤ t ≤ T .

We find φ(u) = θ2 [1
2e−2u − e−u]+ C.

Idea: Simulate the minimum
of (Yt )0≤t≤T to get a
path-specific bound on φ.

0 5 10
u

φ(u)
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Exact algorithm 2 (EA2); Beskos et al. (2006)
1 Simulate the minimum mT (and the time, tm, it is attained) of a

Brownian bridge from Y0 to YT .

2 Find a bound K (mT ) on φ(u) over the interval [mT ,∞).
3 Simulate a Poisson point process on [0,T ]× [0,K (mT )].
4 Simulate the Brownian bridge at the times of the Poisson

points, conditioned on mT and tm.
5 If any of the former are beneath any of the latter, return to 1.

0 T
0

K(m)
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Efficiency
It is possible to relax assumptions on the size of φ entirely
(“EA3”; Beskos et al., 2008).
The exact algorithms will be less efficient wherever φ(Xt ) is very
large—unavoidable when the diffusion travels through a region
where the drift (or its derivative) is very large.

Example: Entrance boundary at 0

“A diffusion at x will almost
surely not hit 0 before hitting
any b > x .
A diffusion started at 0 will
enter (0,∞) in finite time.”
If σ2(x) = 1, then φ explodes
at the boundary.
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Large φ is a symptom of a poor likelihood ratio, i.e. Brownian
motion is a poor mimic of the target diffusion.

Idea: Replace Brownian motion with a different candidate
process—one with an entrance boundary.
But: the exact algorithms rely heavily on our knowledge about
Brownian bridges:

The distribution of bridge coordinates.
The distribution of the minimum, mT , and its time, tm.
The distribution of bridge coordinates conditioned on (mT , tm).
The ability to sample from these distributions exactly.

Question. Does there exist a diffusion:
with infinitesimal variance equal to 1,
with an entrance boundary, and such that
the finite-dimensional distributions of its bridges are known, and
which can be simulated exactly, and
(bonus) whose extrema are well characterized?
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Bessel process

Infinitesimal
variance 1?
Entrance
boundary?
Finite-
dimensional
distributions?

Exact
simulation?

Distributions
of extrema?

X Drift β(y) = (δ − 1)/(2y),
variance σ2(y) = 1.

X Zero is an entrance boundary when δ ≥ 2.

X p(y ,0)→(z,T )(x ; t) =

T
2t(T−t)e

−
(

z(T−t)
2tT + xT

2t(T−t)+
yt

2T (T−t)

)
Iν(
√

xz
t )Iν(

√
xy

(T−t)2
)

Iν(
√

yz
T2 )

,

where ν = 2(δ + 1), is the transition density
of the (squared) Bessel bridge.

X δ ∈ Z≥0: radial part of a δ-dimensional
Brownian motion.
δ ∈ R≥0: See Makarov & Glew (2010).

(X) Partly.
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Bessel-EA

Exact simulation from a diffusion with law Qy using the Bessel
process (law Bδy � Qy ) is possible by the following:

Theorem.
Under regularity conditions (similar to EA), Qy is the marginal
distribution of Y when

(Y ,Φ) ∼ (Bδy ⊗ PPP)
∣∣∣ {Φ ⊆ epigraph

[
φ̃(Y )

]}
,

where PPP is the law of a Poisson point process Φ of unit rate on
[0,T ]× [0,∞),and

φ̃(u) :=
1
2

[α2
θ(u)− β2(u) + α′θ(u)− β′(u)] + C.
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Outline of proof.
Similar to the Brownian case: regularity conditions permit a
Girsanov transformation and rearrangement so that

dQy

dBδy
(Y ) ∝ exp

{
−
∫ T

0
φ̃(Yt )dt

}
≤ 1,

provides the rejection probability for sampling from the conditional
law

(Bδy ⊗ L)
∣∣∣ {Φ ⊆ epigraph

[
φ̃(Y )

]}
.

So what?
We have just replaced one candidate process for another, the
only substantial difference the appearance of

φ̃(u) :=
1
2

[α2
θ(u)− β2(u) + α′θ(u)− β′(u)] + C.

instead of
φ(u) :=

1
2

[α2
θ(u) + α′θ(u)] + C.
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Example: A population growth model.

A diffusion (Xt )0≤t≤T with drift and diffusion coefficients

µ(x) = κx , σ2(x) = x + ωx2,

commenced from X0 = x0 and grown to XT = xT .

The population has not died out, so we can condition the
process on non-absorption at 0.
Conditioning and Lamperti transforming leads to new drift

α(y) =
κ√
ω

tanh
[√

ωy
2

]
−
√
ω

2
coth

[√
ωy
]

+
ω − 2κ√

w

tanh
[√

ωy
2

]
1− cosh

4κ
ω
−2
[√

ωy
2

] ,
with an entrance boundary at 0.
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with an entrance boundary at 0.
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Example: A population growth model.
What does the drift look like at the boundary?

α(y) =
3

2y
+ O(y) as y → 0.

Compare with the Bessel process: β(y) =
δ − 1
2y

.

So we should choose δ = 4 for our candidate process.
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Example: A population growth model.

φ̃ is (tightly) bounded (by K say), while φ is unbounded as
y → 0.

Hence we can use the following Bessel-EA to return skeleton
bridges:

1 Simulate a Poisson point process on [0,T ]× [0,K ].
2 Simulate a Bessel bridge of dimension δ = 4 at the times of the

Poisson points.
3 If any of the former are beneath any of the latter, return to 1.
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Results
Bessel-EA1 Y0 = y to Y0.15 = 1, ω = 3.

Poisson Skeleton Random Total
κ y Attempts points points variables Time (s)

1.0 10.0 1.1 0.2 0.2 1.9 0
1.0 1.0 1.0 0.2 0.2 1.9 0
1.0 0.25 1.0 0.2 0.2 2.0 0
1.0 0.15 1.0 0.2 0.2 2.0 1
1.0 0.1 1.1 0.2 0.2 2.0 1
1.0 0.025 1.0 0.2 0.2 2.0 0

Brownian-EA (“EA2”)
Poisson Skeleton Random Total

κ y Attempts points points variables Time (s)
1.0 10.0 1.0 0.1 0.1 7.3 0
1.0 1.0 1.1 0.1 0.1 7.4 0
1.0 0.25 1.2 1288.6 420.6 3846.1 6
1.0 0.15 1.4 7531.1 617.4 16921.4 16
1.0 0.1 DNF DNF DNF DNF DNF
1.0 0.025 DNF DNF DNF DNF DNF

27 / 42



Introduction Exact algorithm Bessel-EA Wright-Fisher diffusion Summary

Results
Bessel-EA1 Y0 = y to Y0.15 = 1, ω = 3.

Poisson Skeleton Random Total
κ y Attempts points points variables Time (s)

10.0 10.0 5.2 14.1 6.8 56.4 1
10.0 1.0 3.0 7.9 4.9 36.4 1
10.0 0.25 2.3 6.1 4.4 30.8 1
10.0 0.15 2.2 6.0 4.3 30.3 0
10.0 0.1 2.2 5.9 4.4 30.4 0
10.0 0.025 2.1 5.8 4.3 29.6 1

Brownian-EA (“EA2”)
Poisson Skeleton Random Total

κ y Attempts points points variables Time (s)
10.0 10.0 5.0 9.8 4.8 40.9 0
10.0 1.0 2.9 5.9 3.6 29.8 0
10.0 0.25 2.6 81.4 10.7 201.9 0
10.0 0.15 2.9 23052.1 1981.9 52056.9 52
10.0 0.1 DNF DNF DNF DNF DNF
10.0 0.025 DNF DNF DNF DNF DNF
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When is the singularity in the drift at an entrance boundary matched
by a Bessel process?

Here’s a partial answer.

Theorem.
Suppose we have a diffusion Y satisfying the requirements of EA1.
Then the diffusion Y ∗ obtained by conditioning this process on
{Tb < T0}, can be simulated via Bessel-EA1 with δ = 3.

Outline of proof.
Deduce regularity requirements for Bessel-EA1 from the
assumptions of EA1.
Compute the conditioned drift α∗(y) by bare hands, using a
Doob h-transform.
We find φ̃∗(u) is bounded iff δ = 3 (among all possible
δ ≥ 2).
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Remarks
1 The previous result is perhaps not surprising given the well

known observation:

A Brownian bridge conditioned to remain positive is a Bessel bridge
of dimension δ = 3.

2 The close relationship between Brownian bridges and
Bessel(3) bridges is exploited in EA2—to simulate a Brownian
bridge conditioned on its minimum (Beskos et al., 2006).

3 Hence, Bessel-EA1 and (Brownian)-EA2 are similar when
applied to conditioned diffusions.

4 The theorem does not apply to the population growth example;
an ‘extra’ 1/(2y) comes from the Lamperti transform.
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The Wright-Fisher diffusion with mutation but no selection

dXt = [θ1(1− Xt )− θ2Xt ]dt +
√

Xt (1− Xt )dWt , X0 = x , t ≥ 0.
The transition density has eigenfunction expansion

f (x , y ; t) =
∞∑

m=0

qm(t)
m∑

l=0

Bm,x (l)︸ ︷︷ ︸
Binomial PMF

· Dθ1+l,θ2+m−l(y)︸ ︷︷ ︸
Beta density

,

where qm(t) is the transition function of a certain pure death process
on N (related to Kingman’s coalescent):

m 7→ m − 1 at rate
m(m + θ1 + θ2 − 1)

2
.

So f (x , y ; t) is a known infinite mixture of beta random variables.

31 / 42



Introduction Exact algorithm Bessel-EA Wright-Fisher diffusion Summary

The Wright-Fisher diffusion with mutation but no selection

dXt = [θ1(1− Xt )− θ2Xt ]dt +
√

Xt (1− Xt )dWt , X0 = x , t ≥ 0.
The transition density has eigenfunction expansion

f (x , y ; t) =
∞∑

m=0

qm(t)
m∑

l=0

Bm,x (l)︸ ︷︷ ︸
Binomial PMF

· Dθ1+l,θ2+m−l(y)︸ ︷︷ ︸
Beta density

,

where qm(t) is the transition function of a certain pure death process
on N (related to Kingman’s coalescent):

m 7→ m − 1 at rate
m(m + θ1 + θ2 − 1)

2
.

So f (x , y ; t) is a known infinite mixture of beta random variables.

31 / 42



Introduction Exact algorithm Bessel-EA Wright-Fisher diffusion Summary

Duality and the transition density of the Wright-Fisher diffusion

f (x , y ; t) =
∞∑

m=0

qm(t)
m∑

l=0

Bm,x (l)︸ ︷︷ ︸
Binomial PMF

· Dθ1+l,θ2+m−l(y)︸ ︷︷ ︸
Beta density

,

Time 

Allele 
frequency 

1 

0 

x 

y 

t 
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Duality and the transition density of the Wright-Fisher
diffusion

f (x , y ; t) =
∞∑

m=0

qm(t)
m∑

l=0

Bm,x (l)︸ ︷︷ ︸
Binomial PMF

· Dθ1+l,θ2+m−l(y)︸ ︷︷ ︸
Beta density

,

Convenient for simulation! (Griffiths & Li, 1983)
1 Simulate M ∼ {qm(t) : m = 0,1, . . .}.

(a realization of Kingman’s coalescent with mutation, time t).

2 Simulate L ∼ Binomial(M, x).
3 Return Y ∼ Beta(θ1 + L, θ2 + M − L).
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Exact simulation with the Wright-Fisher diffusion
We can simulate from this Wright-Fisher diffusion directly.
Key idea: Use it as the candidate in an exact algorithm for more
complicated drifts.

With proposal drift α(x) and target drift β(x), the Radon-Nikodým
derivative is:

dWFβ
dWFα

(X ) ∝ exp

{∫ T

0
φ̂(Xt )dt

}
,

where

φ̂(x) :=
1
2

[
β2(x)− α2(x)

x(1− x)
+ β′(x)− α′(x)− [β(x)− α(x)]

1− 2x
x(1− x)

]
.

This provides the required rejection probability.
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Example (Natural selection)

Proposal drift: α(x) = θ1(1− x)− θ2x .
Target drift: β(x) = α(x) + γx(1− x).

Radon-Nikodým derivative:

dWFβ
dWFα

(X ) ∝ exp

{∫ T

0

[
1
2
γ2x(1− x) + γθ1(1− x)− γθ2x

]
︸ ︷︷ ︸

φ̂(x)

dt

}
.

φ̂(x) is just a quadratic polynomial on a compact interval, so
bounded!
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Issues

f (x , y ; t) =
∞∑

m=0

qm(t)
m∑

l=0

Bm,x (l)︸ ︷︷ ︸
Binomial PMF

· Dθ1+l,θ2+m−l(y)︸ ︷︷ ︸
Beta density

,

Simulating from WFα.
1 Simulate M ∼ {qm(t) : m = 0,1, . . .}.

(a realization of Kingman’s coalescent with mutation, time t).
2 Simulate L ∼ Binomial(M, x).
3 Return Y ∼ Beta(θ1 + L, θ2 + M − L).

Problem.
Mixture weights are known only as an infinite series:

qm(t) =
∞∑

k=m

(−1)k−m (θ + 2k − 1)Γ(θ + m + k − 1)

m!(k −m)!Γ(θ + m)
e−k(k+θ−1)t/2.
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Solution: A variant of the alternating series method (Devroye, 1986).

Suppose X has PMF {pm : m = 0,1, . . .} of the form

pm =
∞∑

k=0

(−1)kbk (m), where bk (m) ↓ 0 as k →∞.

Then for each M,K ,
M∑

m=0

2K+1∑
k=0

(−1)kbk (m) ≤
M∑

m=0

pm ≤
M∑

m=0

2K∑
k=0

(−1)kbk (m),

and these lower and upper bounds converge monotonically to the
required CDF.
Hence, we can employ standard inversion sampling:

Sample U ∼ Uniform[0,1]; then

inf
{

M ∈ N :
∑M

m=0 pm > U
}

d
= X ,

—except computing only as many terms in the series as needed in
order to determine whether or not the inequality holds (testing each
M in turn).
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Proposition (Jenkins & Spanò, in preparation).
The coefficients of the ancestral process of Kingman’s coalescent,

{qm(t) : m = 0,1, . . .},
can be rearranged so that the alternating series method applies.
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Summary
It is possible to simulate efficiently from several diffusions with a
finite entrance boundary, without discretization error.

Candidate diffusions other than Brownian motion:
Bessel process
Wright-Fisher diffusion

suggest the potential for further generalizing the exact
algorithms.

Further work

Extend to an inference algorithm; applications to population
genetic data.
Other types of boundary (sticky, absorbing, . . . )
What other candidate processes are both easy to simulate and
useful?
Extensions to infinite-dimensions (cf. Fleming-Viot process)?
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Extend to an inference algorithm; applications to population
genetic data.
Other types of boundary (sticky, absorbing, . . . )
What other candidate processes are both easy to simulate and
useful?
Extensions to infinite-dimensions (cf. Fleming-Viot process)?
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Outline

6 Appendix
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Appendix

Conditioned diffusion:

φ̃∗(u) =
1
2

[
α2(u) + α′(u) +

(δ − 3)(δ − 1)

4u2

]
+ C.
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Appendix

Convergent series method

f (m) =
∑∞

k=1 ak (m).
REPEAT

Generate X ∼ h.
Generate U ∼ U[0,1].
Set W := Uch(X ), S = 0, k = 0.
REPEAT

k 7→ k + 1,
S 7→ S + ak (X ),

UNTIL |S −W | > Rk+1(X )

UNTIL S ≤W . RETURN X .
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Appendix

Alternating series method

f (m) = ch(m)
∑∞

n=0(−1)nbn(m) and bn(m) ↓ 0.
REPEAT

Generate X ∼ h.
Generate U ∼ U[0, c].
Set W := 0, n = 0.
REPEAT

n 7→ n + 1,
W 7→W + bn(X ),
IF U ≥W THEN RETURN X.
n 7→ n + 1,
W 7→W − bn(X ).

UNTIL U < W
UNTIL FALSE.
This works because

1 +
k∑

n=1

(−1)nbn(x) ≤ f (x)

ch(x)
≤ 1 +

k+1∑
n=1

(−1)nbn(x), k odd.
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