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Marginal Models

There are many situations in which we need to model marginal structure
as part of a larger multivariate model:

to account for dependence between individuals in panel studies;

to enforce stationarity in longitudinal models;

to model a marginal or conditional independence in a Bayesian
network;

in causal models;

to transfer information across studies;

etc...
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Political Orientation

This is data from a panel study which rated political orientation from 1
(extremely liberal) to 7 (extremely conservative) in 1992 and 1994. (Bergsma,
Croon and Hagenaars, 2013)

1992

Political Orientation 1994
1 2 3 4 5 6 7 Total

1 3 4 1 2 0 1 0 11
2 2 23 15 6 0 2 0 48
3 1 8 23 9 9 1 0 51
4 0 6 17 56 19 13 2 113
5 0 1 1 18 40 29 3 92
6 0 1 1 4 13 51 7 77
7 0 0 0 0 2 11 3 16

Total 6 43 58 95 83 107 16 408

Näıve modelling gives no evidence to reject null hypothesis of no change; full
modelling gives strong evidence of a shift.
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Parameterisations

A simple parameterisation just uses the cell probabilities p11, p21, . . ..

X

Y
1 2 3 Total

1 p11 p12 p13 p1+
2 p21 p22 p23 p2+
3 p31 p32 p33 p3+

Total p+1 p+2 p+3 p++

To model the marginals, we instead want to start with the row and
column totals: p1+, p2+, . . . , p+1, p+2 . . ..

On top of this, we need. . .

the odds ratios!

e.g.
p11p22
p12p21

.
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Smooth, Variation Independent Parameters

X

Y
1 2 3 Total

1 p11 p12 p13 p1+
2 p21 p22 p23 p2+
3 p31 p32 p33 p3+

Total p+1 p+2 p+3 p++

p1+, p2+;

p+1, p+2;

p11p22
p12p21

,
p11p23
p13p21

p11p32
p12p31

,
p11p33
p13p31

.

Using marginal probabilities and odds ratios is a

smooth and

variation independent

parameterisation.
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Margins

Causal modelling typically involves marginal parameters with some more
complicated global structure.

Suppose we want to know how X affects Y , but we have a measured
confounder Z.

X Y

Z

P (y | do(x)) =
∑
z

P (z)P (y | x, z).

This quantity tells us what would happen if X were chosen independently
of Z. How do we use it to generate observations from the real
distribution with this marginal piece?
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Multiple Experiments and Transportability
Suppose we have two experiments on some of the same variables:

X Y

Z

observational study, P

X Y

W

randomised trial, Q

Suppose want to assert / test that

P (Y | do(X)) = Q(Y | do(X)).

These are marginal parameters:

P (Y | do(X)) =
∑
Z

P (Y | X,Z) · P (Z)

Q(Y | do(X)) = Q(Y | X).
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Survival Models

At each time t we have:

Ut unobserved variables;

Lt covariates;

At treatment;

Yt survival.

Ut−1

Lt−1

At−1

Yt−1

Ut

Lt

At

Yt

What is probability of survival (Y = 1) to next time point, given
treatment?

P (Yt = 1 |Yt−1 = 1, do(A1, . . . , At)).
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Causal Models

Take a simple two-step dynamic treatment model.

A L B

U

Y

A,B treatments (randomised);

L intermediate outcome;

Y final outcome;

U unobserved confounders.
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Identification

A L B

U

Y

Question: how do the treatments causally affect the final outcome?
Or, if we treated everyone with (a, b), what would happen?

How do we identify this?

P (Y | A = a,B = b): ignoring/marginalising L;

P (Y | A = a,B = b, L = l): conditioning on L.

Neither has the desired causal interpretation!
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Identification

A L B

U

Y

Can ‘reweight’ a sample/distribution to pretend that B was assigned
independently of A and L:

P ∗(A,L,B, Y ) = P (A,L,B, Y )
P (B)

P (B | A,L)
.

In this new ‘world’, L is post-treatment, so just ignore it!
Then P ∗(Y | A,B) does have the desired causal interpretation!

P ∗(Y | A,B) =
∑
L

P ∗(L, Y | A,B) =
∑
L

P (Y | A,L,B) · P (L | A).
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Parameterising Causal Models
Identification due to Robins (1986); more general results available
(Shpitser and Pearl, 2006).

A L B

U

Y

I will denote this causal quantity by

P (Y | do(A = a,B = b))

i.e. the distribution of outcome given that the treatments are set to (a, b)
by intervention.

Causal question of interest might be:

“does P (Y | do(A = a,B = b)) depend upon a?”
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Parameterising Causal Models
For likelihood-based inference and simulation, need a parametrisation.

A L B

U

Y

Standard parameterisations lead to the g-null paradox.

For example, if:

logistic regression model for Y given A,B,L;

linear Gaussian model for L given A;

then with faithfulness it is impossible for P (Y | do(A,B)) not to depend
upon A. (Robins and Wasserman, 1997)

Naturally, this is disastrous for hypothesis testing.
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Simulation

Havercroft and Didelez (2012) note that simulating data from this model
such that P (Y | do(A,B)) independent of A is difficult in some cases.

A L B

U

Y

Why?

Simulation requires P (A,L,B, Y );
relationship to P (Y | do(A,B)) seems complicated.

g-null paradox shows we can’t just specify a nice parametric model for P
and then fix parameters until independence holds.
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Recast the Problem

Define

P ∗(Y, L | A,B) ≡ P (Y,L | do(A,B))

= P (Y | A,L,B) · P (L | A).

Message: P ∗ is just a (conditional) probability distribution.

Desired Properties of P ∗

nice model for P ∗(Y | A,L,B) = P (Y | A,L,B) for simulation.

nice model for P ∗(Y | A,B) for statistical inference;

nice model for P ∗(L | A,B) = P (L | A) to ensure L ⊥⊥ B | A [P ∗];

So how do we get this?

Short answer: we can’t! It doesn’t make sense to try to specify
P ∗(Y | A,L,B) and P ∗(Y | A,B) separately.
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Margins

A better way to think about this: given intervention distribution P ∗

suppose we have:

A

L

B

U

Y

a model for P ∗(Y | A,B);

a model for P ∗(L | A,B) = P (L | A);

These do not fully specify P ∗(Y,L | A,B)
so what else do we need?

Answer
The Y -L odds ratio, conditional on A = a,B = b:

φY L(Y,L | A,B).

The additional information given by P (Y | A,L,B) is then redundant.
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Generalising Odds Ratios

Familiar definition of an odds ratio:

OR(X,Y ) =
P (X = 1, Y = 1) · P (X = 0, Y = 0)

P (X = 1, Y = 0) · P (X = 0, Y = 1)
.

Information contained is the same as:

φXY (x, y) ≡ P (X = x, Y = y) · u(x) · v(y).

for unknown functions u, v > 0.

Can obtain the familiar odds ratio by taking the cross-ratio:

φXY (1, 1) · φXY (0, 0)

φXY (1, 0) · φXY (0, 1)
=
P (X = 1, Y = 1) · P (X = 0, Y = 0)

P (X = 1, Y = 0) · P (X = 0, Y = 1)
.
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Generalising Odds Ratios

Let p be a density for X,Y .

The odds ratio for X,Y is the equivalence class of functions φXY such
that

φXY (x, y) = p(x, y) · u(x) · v(y).

some functions u, v > 0.

Some points:

defined for any distribution with a density;

p is a member of the equivalence class;

there’s no requirement for p to be positive;

iterative proportional fitting recovers the joint distribution.
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Specifying Margins

Let rXY (x, y) be a joint distribution with odds ratio φXY .

Theorem
Let pX and pY be densities such that pX � rX and pY � rY . Then
there exists a unique joint distribution with margins pX , pY and odds
ratio φXY .

This follows from Csiszár (1975).

This is a form of variation independence: we can paste together
essentially any dependence structure with any margins and get a
distribution.
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Examples

For discrete variables this reduces to the ‘usual’ odds ratio;

for Gaussian variables:

φXY ∼ exp

(
ρxy

σxσy(1− ρ2)

)
multivariate t-distribution (x = (x, y)T ):

φXY ∼
(
1 + ν−1xTΣ−1x

)−ν/2−1

23 / 41



Copulae

A popular way of modelling dependence between variables without
specifying margins is to use a copula model.

P (X ≤ x, Y ≤ y) = C(FX(x), FY (y))

p(x, y) = c(FX(x), FY (y)) · p(x) · p(y).

Note we can’t obtain the copula from the odds ratio (or vice versa)
without knowing the margins.

Features:

Well established methods for fitting, simulation, inference.

Non-continuous variables lead to unidentifiability.

Not clear which is easier to interpret, copula or odds ratio.
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Cognate Probabilities

We say a quantity f(xC | xA) is a cognate distribution to the
conditional probability density p(xC | xA) if is of the form

f(xC | xA) ≡
∫
xB

p(xC | xA, xB) · w(xB | xA) dxB ,

where w(xB | xA) > 0 is a function of p(xA, xB) such that∫
w(xB | xA) dxB = 1 for each xA.

Examples

p(xC | xA) =

∫
p(xC | xA, xB) · p(xB | xA) dxB

p(xC | do(xA)) =

∫
p(xC | xA, xB) · p(xB) dxB

EXC(xA, x
′
A) =

∫
p(xC | xA, xB) · p(xB | x′A) dxB .
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Cognate Probabilities

In the discrete case, we can substitute cognate quantities in
parameterisations without any problem.

Theorem
Suppose we have a multivariate discrete parameterisation which is
hierarchical and consists of probabilities of the form P (XAi

| XBi
).

Then if we replace any of these P ∗(XAi
| XBi

) with cognate quantities,
the parameterisation is still smooth.

Conversely, a parameterisation involving two quantities which are cognate
to one another will not be smooth, and any parameterisation which
contrasts cognate quantities is non-smooth.
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Cognate Probabilities

X Y

Z

Example.

Since

P (Z) P (X | Z) P (Y | X) φY Z|X is smooth...

P (Z) P (X | Z) P (Y | do(X)) φY Z|X is also smooth!

Example.

θx = P (Y = 1 | do(X = x))− P (Y = 1 | X = x)

cannot form part of a smooth parameterisation.
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Results

Theorem

Consider (possibly vector valued) Y and X,Z. Then can parameterise
joint distribution P (Z,X, Y ) with:

P (Z,X) P ∗(Y | X)︸ ︷︷ ︸
cognate to P

φZY (Z, Y | X)︸ ︷︷ ︸
P−odds ratio

and these three pieces are variation independent of one another.

X Y

Z
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Results

It follows that, given a temporal ordering, we can apply this result
inductively, obtaining one ‘piece of information of interest’ for each
variable.

Suppose we have an ordered set of variables: X1, X2, . . . , Xk.

For each Xi divide the predecessors into two sets: Wi ∪ Vi.

Theorem
We can obtain a variation independent parameterisation which includes

P ∗(Xi |Wi) ∀i.

for any set of cognate quantities P ∗(Xi |Wi).
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A Recipe

A L B

U

Y

For our problem, separately specify (nice, parametric) models for:

P (A);

P (L | A);

P (B | A,L);

P (Y | do(A,B)) and φY L(Y,L | A,B) (the conditional odds ratio).

This is a fully variation independent, with no redundancy.
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Example: Observed Confounding

X Y

Z

G

Can parameterize this as:

P (Z), P (X | Z);

P (Y | do(X)), φY Z(Y, Z | X).

The variation independence is useful:

easy to incorporate covariates in GLM form;

no danger of choosing impossible higher order interactions
(so no g-null paradox!);

means independent priors are valid.

Example, suppose want to model how is causal effect of X on Y
modulated by G. Then we can do this with a logistic regression form:

logitP (Y = 1 | do(X), G) = f(X,G).
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Example: Survival Models

Young and Tchetgen Tchetgen (2014) consider survival models:

Ut−1

Lt−1

At−1

Yt−1

Ut

Lt

At

Yt

What is probability of survival (Y = 1) to next time point, given
treatment?

P (Yt = 1 |Yt−1 = 1, do(A1, . . . , At)).

No problem! What remains is the dependence structure between L’s and
Yt given A1, . . . , At
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Example: Survival Models

Hence simulation in some cases becomes relatively easy under a null; e.g.:

P (Yt |Yt−1 = 1, do(A1, . . . , At)) = P (Yt |Yt−1 = 1).

Young and Tchetgen Tchetgen note that this is not at all trivial.

Can also easily incorporate, for e.g., a stationarity assumption.

P (Yt |Yt−1 = 1, do(At = a)) = g(a)
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What Can’t Be Done

With each parameter (either conditional distribution or odds ratio) we
can associate a collection of subsets of variables:

D(P (XA | XB)) = {W ⊆ A ∪B : A ∩W 6= ∅}

D(φAB(XA, XB | XC)) = {W ⊆ A ∪B ∪ C : A ∩W 6= ∅, B ∩W 6= ∅}.

Examples:

D(P (Y | X,Z)) = {{Y }, {X,Y }, {Y, Z}, {X,Y, Z}}

D(φY Z(Y,Z | X)) = {{Y, Z}, {X,Y, Z}}.
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What Can’t Be Done

Proposition

Let ψ,ψ′ be two parameters (i.e. cognate conditional distributions or
odds ratios).
If D(ψ) ∩ D(ψ′) 6= ∅ then any parameterisation that includes ψ and ψ′ is
non-smooth.

Example

In our original example we tried to have:

P (Y | A,B,L) P (Y | do(A,B)).

But these both include {Y }, {Y,A}, {Y,B}, {Y,A,B}.
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Example: History-Adjusted Marginal Structural
Models

Denote At = (A1, . . . , At) and At = (At, . . . , AT ).

van der Laan at al (2005) introduce a history-adjusted model that
models:

p(Y | Lt, At−1, do(At)), t = 1, . . . , T.

By the previous result, we cannot expect to model e.g.

p(Y | L1, do(A1, A2)) p(Y | L1, L2, A1, do(A2)).

separately.

The incompatibility of the models used was pointed out by Robins,
Hernán and Rotnitzky (2007).
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Summary

Causal models are marginal models;

the g-null paradox arises from trying to specify the same quantity
twice;

this can be avoided by understanding which parameters are ‘free’ to
be specified;

application to marginal structural models, survival models,
stationarity, transportability...

simulation becomes much easier in Gaussian, discrete cases, some
copula models;

there is a large literature on marginal models to look at for other
cases.
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Thank you!
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