The survival probability in high dimensions

Remco van der Hofstad

Bristol Probability Seminar January 23, 2015

Based on

$\triangleright \mathrm{vdH}$ and Mark Holmes. The survival probability and r-point functions in high dimensions. Ann. Math. 178(2): 665-685, (2013).

Branching processes

Branching process is simple model for

evolution of number of individuals

in population. Individuals each have random number of identically and independently distributed (i.i.d.) offspring.

Formally, let N_{n} be number of individuals in generation n in branching process started from single individual. Then

$$
N_{n+1}=\sum_{i=1}^{N_{n}} X_{n, i}
$$

where offsprings $\left(X_{n, i}\right)_{n, i \geq 0}$ form array of i.i.d. random variables.
Questions:
\triangleright When does population survive with positive probability?
\triangleright How many individuals are there at time n ?

Theorem 0. $\quad \theta=\mathbb{P}\left(N_{n} \geq 1 \forall n \geq 0\right)=0$ precisely when $\mathbb{E}[X] \leq 1$. [Except for boring case $X=1$ a.s.]

Proof for simple example:

$$
\mathbb{P}(X=2)=p=1-\mathbb{P}(X=0)
$$

for which $\mathbb{E}[X]=2 p$. Let $\theta_{n}(p)=\mathbb{P}\left(N_{n} \geq 1\right)$. Then, $\theta_{0}(p)=1$ and

$$
\theta_{n}(p)=p \mathbb{P}\left(N_{n} \geq 1 \forall n \geq 0 \mid X_{0,1}=2\right)=p\left[2 \theta_{n-1}(p)-\theta_{n-1}(p)^{2}\right]
$$

Further, $\theta(p)=\mathbb{P}\left(N_{n} \geq 1 \forall n \geq 0\right)=\lim _{n \rightarrow \infty} \theta_{n}(p)$ is largest solution

$$
\theta(p)=p\left[2 \theta(p)-\theta(p)^{2}\right] .
$$

Solution:

$$
\begin{aligned}
& \theta(p)=0 \text { for } p \leq 1 / 2 \\
& \theta(p)=(2 p-1) / p \text { for } p>1 / 2 .
\end{aligned}
$$

BP phase transition

We can compute $\mathbb{E}\left[N_{n}\right]=\mathbb{E}[X]^{n}$.
\triangleright When $\mathbb{E}[X]<1$, Markov's inequality shows that

$$
\mathbb{P}\left(N_{n} \geq 1\right) \leq \mathbb{E}\left[N_{n}\right]=\mathbb{E}[X]^{n},
$$

which is exponentially small. Thus, total population $\sum_{n \geq 0} N_{n}$ has finite mean: subcritical branching process.
\triangleright When $\mathbb{E}[X]>1$,

$$
M_{n}=N_{n} / \mathbb{E}\left[N_{n}\right]
$$

is non-negative martingale, and assuming that $\mathbb{E}[X \log X]<\infty$,

$$
M_{n} \xrightarrow{\text { a.s. }} M,
$$

where $\theta=\mathbb{P}(M=0)$. Thus, conditionally on survival,
N_{n} grows exponentially: supercritical branching process.

Critical BPs

Branching processes with offspring X are called critical when

$$
\mathbb{E}[X]=1
$$

\triangleright Simplest example of phase transition. Many statistical physics models have phase transition. For branching processes explicit computations are possible.
\triangleright Most interesting behavior occurs close to phase transition, i.e., for critical branching processes. For example,

$$
\theta_{n}=\mathbb{P}\left(N_{n} \geq 1\right) \rightarrow 0, \quad \text { but } \quad \mathbb{E}\left[N_{n}\right]=1
$$

\triangleright Implies that $N_{n}=0$ most of the times, but when $N_{n} \geq 1$, in fact N_{n} is very large.

Critical BPs

Let N_{n} be number of individuals in generation n in critical branching process with offspring distribution having variance γ.

Kolmogorov (1938):

$$
n \theta_{n}=n \mathbb{P}\left(N_{n} \geq 1\right) \rightarrow 2 / \gamma
$$

Yaglom (1947): Conditionally on $N_{n} \geq 1$,

$$
N_{n} / n \xrightarrow{d} \operatorname{Exp}(2 / \gamma) .
$$

How?

Kolmogorov: induction on n, Yaglom: moment method on N_{n}.
Goal:
Prove Kolmogorov and Yaglom's Theorems for spatial statistical physics models in high dimensions, where interaction between faraway pieces is small.

Oriented percolation

Oriented bonds join (x, n) to $(y, n+1)$ for $n \geq 0$ and $x, y \in \mathbb{Z}^{d}$. Make bond $((x, n),(y, n+1))$ independently
occupied with probability $p D(y-x)$,
vacant with probability $1-p D(y-x)$.
Here, $p \in\left[0,1 /\|D\|_{\infty}\right]$ is percolation parameter, and $x \mapsto D(x)$ is some random walk transition probability.

Spread-out models: range of D grows proportionally with L and

$$
\sup _{x} D(x) \leq C L^{-d}, \quad \sum_{x}|x|^{2} D(x) \approx c L^{2}
$$

Simplest example: $D(x)=(2 L+1)^{-d} \mathbb{1}_{\left\{\|x\|_{\infty} \leq L\right\}}$.

OP phase transition

Survival probability: N_{n} is number of particles alive at time n and

$$
\theta_{n}(p)=\mathbb{P}_{p}\left(N_{n} \geq 1\right) .
$$

Oriented percolation has a phase transition, i.e, there is a critical probability $p_{c}=p_{c}(d, L) \in(0, \infty)$, such that
\triangleright For $p<p_{c}$, a.s. no infinite cluster, $\theta_{n}(p)$ exponentially small.
\triangleright For $p>p_{c}$, a.s. unique infinite cluster, $\theta_{n}(p) \downarrow \theta(p)>0$.
\triangleright For $p=p_{c}, \theta_{n}\left(p_{c}\right) \downarrow 0$ (Bezuidenhout and Grimmett (1990)), $\theta_{n}=\theta_{n}\left(p_{c}\right)$ not understood and dimension dependent.

Goal: Prove that $n \theta_{n}$ converges in high dimensions.

Related models

\triangleright Contact process. Continuous-time version OP.
Bezuidenhout-Grimmett (90): Exists critical infection rate λ_{c} above which disease survives with positive prob., below it dies out a.s.
\triangleright Survival probability: N_{t} is number of infected individuals at time t when started from single infected individual, and $\theta_{t}=\theta_{t}\left(\lambda_{c}\right)=\mathbb{P}\left(N_{t} \geq 1\right)$.
\triangleright Lattice trees. T is finite connected set of bonds containing no cycles. Fix $z>0$ and define

$$
\rho_{z}(x)=\sum_{T \ni 0, x} z^{|T|} \prod_{(x, y) \in T} D(y-x), \quad \mathbb{P}(T)=\frac{z_{c}^{|T|}}{\rho_{z_{c}}(0)} \prod_{(x, y) \in T} D(y-x)
$$

where z_{c} is radius of convergence of $\rho_{z_{c}}(0)$.
\triangleright Survival probability: N_{n} is number of vertices at tree distance n from origin, and $\theta_{n}=\theta_{n}\left(z_{c}\right)=\mathbb{P}\left(N_{n} \geq 1\right)$.

Main result

Theorem 1 (Kolmogorov's and Yaglom's Theorem)
Let $L \gg 1$, and $d>4$ for oriented percolation and contact process, and $d>8$ for lattice trees. Then, there exist $A, V>0$ s.t.

$$
\lim _{n \rightarrow \infty} n \theta_{n}=2 /(A V)
$$

and, conditionally on $N_{n}>0$,

$$
N_{n} / n \xrightarrow{d} \operatorname{Exp}(2 /(A V)) .
$$

Interpretation (vdH-Slade03, vdH-Sakai10, Holmes08):

$$
A=\lim _{n \rightarrow \infty} \mathbb{E}\left[N_{n}\right], \quad V A^{3}=\lim _{n \rightarrow \infty} \mathbb{E}\left[N_{n}^{2}\right] / n
$$

Oriented percolation: reproves result vdH-den Hollander-Slade (07a,07b: ± 100 pages), at expense of weaker error estimates.

Proof: three conditions

Condition 1 (Cluster tail bound) There exists $C_{\mathcal{C}}$ s.t.

$$
\mathbb{P}\left(\sum_{n \geq 1} N_{n} \geq k\right) \leq C_{\mathcal{C}} / \sqrt{k}
$$

Condition 2 (Self-repellence survival property) Let \mathcal{F}_{m} be σ-field generated by vertices at distance $\leq m$ from 0 and N_{m} their number. Then there exists C_{θ} s.t. for every stopping time $M \leq n$,

$$
\mathbb{P}\left(0 \longrightarrow n \mid \mathcal{F}_{M}\right) \leq C_{\theta} N_{M} \theta_{n-M} .
$$

Condition 3 (Convergence r-point functions) There exist $A, V>0$ s.t. for each $r \geq 2$ and $\vec{t} \in \mathbb{R}_{+}^{(r-1)}$,

$$
n^{-(r-2)} \mathbb{E}\left[\prod_{i=1}^{r-1} N_{t_{i} n}\right] \rightarrow A\left(V A^{2}\right)^{r-2} \widehat{M}_{\vec{t}}^{(r-1)}(0), \quad \text { as } n \rightarrow \infty,
$$

where $\widehat{M}_{\vec{t}}^{(r-1)}(0)$ are moments total mass super-Brownian Motion.

General result

Theorem 2 (Kolmogorov's and Yaglom's Theorem) When Conditions 1-3 hold,

$$
\lim _{n \rightarrow \infty} n \theta_{n}=2 /(A V),
$$

and, conditionally on $N_{n}>0$,

$$
N_{n} / n \xrightarrow{d} \operatorname{Exp}(2 /(A V)) .
$$

\triangleright Proof relies on lace expansion results formulated in Conditions 1 and 3, but does not use lace expansion itself.

Proof structure

Conditions 1-3 follow from lace expansion results:
\triangleright Condition 1 is $\delta=2$ which follows from triangle condition OP, CP (Aizenman-Newman 84), Derbez-Slade $(97,98)$ for lattice trees.
\triangleright Condition 2 is Markov property for OP/CP, self-repellence for LT.
\triangleright Condition 3 is convergence r-point functions to SBM moment measures: vdH-Slade (03), vdH-Sakai (10), Holmes (08).

Proof structure:
(a) Upper bound using Conditions 1 and 2, similar to KozmaNachmias (09);
(b) Weak convergence arguments using Condition 3, extending ideas from Holmes-Perkins (07).

Upper bound

Investigate $\theta_{4 n}$. Split according to whether there exists $j \in[n, 3 n]$ s.t. $1 \leq N_{j} \leq \varepsilon n$, where $\varepsilon>0$ is chosen later.

If such j does not exist, then $\sum_{j \geq 1} N_{j} \geq 2 \varepsilon n^{2}$. Otherwise, let stopping time J be first. Leads to

$$
\theta_{4 n} \leq \mathbb{P}\left(\sum_{j \geq 1} N_{j} \geq 2 \varepsilon n^{2}\right)+\mathbb{P}(0 \longrightarrow 4 n, J \in[n, 3 n])
$$

Use Condition 1 for first term. For second term, by Condition 2,

$$
\theta_{4 n} \leq C_{\mathcal{C}} / \sqrt{2 \varepsilon n^{2}}+C_{\theta} \mathbb{E}\left[\theta_{4 n-J} N_{J} \mathbb{1}_{\{J \in[n, 3 n]\}}\right] .
$$

By monotonicity of $n \mapsto \theta_{n}$ and bound $N_{J} \leq \varepsilon n$,

$$
\theta_{4 n} \leq C_{\mathcal{C}} / \sqrt{2 \varepsilon n^{2}}+C_{\theta} \varepsilon n \theta_{n} \mathbb{P}(J \in[n, 3 n]) \leq C_{\mathcal{C}} / \sqrt{2 \varepsilon n^{2}}+C_{\theta} \varepsilon n \theta_{n}^{2} .
$$

Claim follows from induction in n.

Lower bound convergence

Rescale time by n and space by \sqrt{n} :

$$
X_{t}^{(n)}(f)=\frac{1}{V A^{2} n} \sum_{x \in A_{n t}} f(x / \sqrt{v n}), \quad \text { and } \quad \mu_{n}(\cdot)=n V A \mathbb{P}(\cdot) .
$$

Let $X_{s}^{(n)}(1)=N_{s n} / n$. Then Condition 3 implies [Holmes+Perkins 07]

$$
\mathbb{E}_{\mu_{n}}\left[\mathbb{1}_{\left\{X_{s}^{(n)}(1)>\eta\right\}} H\left(X_{t}^{(n)}(1)\right)\right] \rightarrow \mathbb{E}_{\mathbb{N}_{0}}\left[\mathbb{1}_{\left\{X_{s}(1)>\eta\right\}} H\left(X_{t}(1)\right)\right],
$$

where $\left(X_{s}(1)\right)_{s \geq 0}$ is total mass canonical measure of SBM.

In particular,

$$
\mathbb{N}_{0}\left(X_{t}(1)>0\right)=2 / t
$$

so that, as $\eta \searrow 0$,
$\liminf _{n \rightarrow \infty} n \theta_{n} \geq(A V)^{-1} \mathbb{E}_{\mu_{n}}\left[\mathbb{1}_{\left\{X_{1}^{(n)}(1)>\eta\right\}}\right] \rightarrow(A V)^{-1} \mathbb{N}_{0}\left(X_{1}(1)>\eta\right) \rightarrow 2 /(A V)$.

Upper bound convergence

By upper bound on $n \theta_{n}$, exists subsequence $\left(n_{k}\right)_{k \geq 1}$ s.t.

$$
n_{k} \theta_{n_{k}} \rightarrow \limsup _{n} n \theta_{n} \equiv b, \quad(1-\delta) n_{k} \theta_{(1-\delta) n_{k}} \rightarrow b_{\delta}
$$

where, by lower bound, $b, b_{\delta} \geq 2 / A V$. Key split:

$$
\begin{array}{rl}
n_{k} \theta_{n_{k}}=n_{k} & \mathbb{P}\left(N_{(1-\delta) n_{k}}>\varepsilon n_{k}, N_{n_{k}}>\varepsilon^{\prime} n_{k}\right) \\
& +n_{k} \mathbb{P}\left(0<N_{(1-\delta) n_{k}} \leq \varepsilon n_{k}, N_{n_{k}}>0\right) \\
& +n_{k} \mathbb{P}\left(N_{(1-\delta) n_{k}}>\varepsilon n_{k}, 0<N_{n_{k}} \leq \varepsilon^{\prime} n_{k}\right)
\end{array}
$$

Weak convergence: first term $\rightarrow 2 /(A V)$ when $k \rightarrow \infty, \delta, \varepsilon, \varepsilon^{\prime} \searrow 0$. Condition 2: second term $\rightarrow 0$ when $k \rightarrow \infty, \delta, \varepsilon, \varepsilon^{\prime} \searrow 0$.
Condition 3: third term $\rightarrow 0$ where limits are taken in order $k \rightarrow \infty$, $\varepsilon^{\prime} \searrow 0, \varepsilon \searrow 0, \delta \searrow 0$.
\triangleright Relies on fact that $\mathbb{N}_{0}\left(X_{1}(1)=0 \mid X_{1-\delta}(1)>0\right)=\delta$ together with weak convergence arguments for $\left(N_{(1-\delta) n} / n, N_{n} / n\right)$ on event $N_{(1-\delta) n} / n>\varepsilon$.

Conclusions \& extensions

\triangleright Proof relies on simple weak convergence estimates.
Rather general. For example, also applies to voter model in $d>2$.
\triangleright Holmes-Perkins 07: Convergence in finite-dimensional distributions to canonical measure super-Brownian motion (CSBM) follows.

CSBM is scaling limit critical branching random walk started from single individual, where
\triangleright particles split or die as in branching process;
\triangleright particles move according to random walk;
\triangleright probability measure is multiplied by a factor n.
\triangleright Percolation. Would extend Kozma-Nachmias to right constant.
Problem: Scaling r-point functions in Condition 3 yet unknown.

Conclusions \& extensions

\triangleright Tightness: General lace expansion criterion vdH-HolmesPerkins (2015). Involves condition on five-point function.
Verified for lattice trees above 8 dimensions.
Tightness for oriented percolation? Incipient infinite structures?
\triangleright Extrinsic one-arm probabilities:
Identified for percolation in high-dim by Kozma-Nachmias (2011):

$$
\mathbb{P}_{p_{c}}\left(0 \longrightarrow Q_{r}^{c}\right) \asymp r^{-2} .
$$

Results imply lower bound with correct constant.
\triangleright Long-range percolation:
Heydenreich-vdH-Hulshof (2014): Identified lower bound in longrange setting, Hulshof (2015) matching upper bound

$$
\mathbb{P}_{p_{c}}\left(0 \longrightarrow Q_{r}^{c}\right) \asymp r^{-(\alpha \wedge 4) / 2}
$$

when $\mathbb{P}_{p_{c}}(\{x, y\}$ occ. $) \sim|x-y|^{-(d+\alpha)}$.

References

[1] van der Hofstad and Holmes. The survival probability and r-point functions in high dimensions. Annals of Math. 178(2): 665-685, (2013)
[2-3] van der Hofstad, den Hollander and Slade. The survival probability for critical spread-out oriented percolation above 4+1 dimensions. I. Induction. PTRF 138: 363-389 (2007). II. Expansion. AIHP 5: 509-570 (2007).
[4] Kozma and Nachmias. The Alexander-Orbach conjecture holds in high dimensions. Invent. Math. 178: 635-654 (2009).
[5] Holmes and Perkins. Weak convergence of measure-valued processes and r-point functions. AoP 35: 1769-1782 (2007).
[6] van der Hofstad, Holmes and Perkins. Criteria for convergence to super-Brownian motion on path space. To appear in AoP, (2015).

