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Branching processes
Branching process is simple model for

evolution of number of individuals

in population. Individuals each have random number of

identically and independently distributed (i.i.d.) offspring.

Formally, let Nn be number of individuals in generation n in branch-
ing process started from single individual. Then

Nn+1 =

Nn∑
i=1

Xn,i,

where offsprings (Xn,i)n,i≥0 form array of i.i.d. random variables.

Questions:
B When does population survive with positive probability?
B How many individuals are there at time n?



BP phase transition
Theorem 0. θ = P(Nn ≥ 1∀n ≥ 0) = 0 precisely when E[X ] ≤ 1.

[Except for boring case X = 1 a.s.]

Proof for simple example:

P(X = 2) = p = 1− P(X = 0),

for which E[X ] = 2p. Let θn(p) = P(Nn ≥ 1). Then, θ0(p) = 1 and

θn(p) = pP(Nn ≥ 1∀n ≥ 0 | X0,1 = 2) = p[2θn−1(p)− θn−1(p)2].

Further, θ(p) = P(Nn ≥ 1∀n ≥ 0) = limn→∞ θn(p) is largest solution

θ(p) = p[2θ(p)− θ(p)2].

Solution:

θ(p) = 0 for p ≤ 1/2;

θ(p) = (2p− 1)/p for p > 1/2.



BP phase transition
We can compute E[Nn] = E[X ]n.

B When E[X ] < 1, Markov’s inequality shows that

P(Nn ≥ 1) ≤ E[Nn] = E[X ]n,

which is exponentially small. Thus, total population
∑

n≥0Nn has
finite mean: subcritical branching process.

B When E[X ] > 1,

Mn = Nn/E[Nn]

is non-negative martingale, and assuming that E[X logX ] <∞,

Mn
a.s.−→M,

where θ = P(M = 0). Thus, conditionally on survival,

Nn grows exponentially: supercritical branching process.



Critical BPs
Branching processes with offspring X are called critical when

E[X ] = 1.

B Simplest example of phase transition. Many statistical physics
models have phase transition. For branching processes explicit
computations are possible.

B Most interesting behavior occurs close to phase transition, i.e.,
for critical branching processes. For example,

θn = P(Nn ≥ 1)→ 0, but E[Nn] = 1.

B Implies that Nn = 0 most of the times, but when Nn ≥ 1, in fact
Nn is very large.



Critical BPs
Let Nn be number of individuals in generation n in critical branching
process with offspring distribution having variance γ.

Kolmogorov (1938):

nθn = nP(Nn ≥ 1)→ 2/γ.

Yaglom (1947): Conditionally on Nn ≥ 1,

Nn/n
d−→ Exp(2/γ).

How?
Kolmogorov: induction on n, Yaglom: moment method on Nn.

Goal:
Prove Kolmogorov and Yaglom’s Theorems for spatial statistical
physics models in high dimensions, where interaction between far-
away pieces is small.



Oriented percolation
Oriented bonds join (x, n) to (y, n + 1) for n ≥ 0 and x, y ∈ Zd.
Make bond ((x, n), (y, n + 1)) independently

occupied with probability pD(y − x),
vacant with probability 1− pD(y − x).

Here, p ∈ [0, 1/‖D‖∞] is percolation parameter, and x 7→ D(x) is
some random walk transition probability.

Spread-out models: range of D grows proportionally with L and

sup
x
D(x) ≤ CL−d,

∑
x

|x|2D(x) ≈ cL2.

Simplest example: D(x) = (2L + 1)−d1{‖x‖∞≤L}.



OP phase transition
Survival probability: Nn is number of particles alive at time n and

θn(p) = Pp(Nn ≥ 1).

Oriented percolation has a phase transition, i.e, there is a
critical probability pc = pc(d, L) ∈ (0,∞), such that

B For p < pc, a.s. no infinite cluster, θn(p) exponentially small.
B For p > pc, a.s. unique infinite cluster, θn(p) ↓ θ(p) > 0.

B For p = pc, θn(pc) ↓ 0 (Bezuidenhout and Grimmett (1990)),
θn = θn(pc) not understood and dimension dependent.

Goal: Prove that nθn converges in high dimensions.



Related models
B Contact process. Continuous-time version OP.
Bezuidenhout-Grimmett (90): Exists critical infection rate λc above
which disease survives with positive prob., below it dies out a.s.
B Survival probability: Nt is number of infected individuals
at time t when started from single infected individual, and
θt = θt(λc) = P(Nt ≥ 1).

B Lattice trees. T is finite connected set of bonds containing no
cycles. Fix z > 0 and define

ρz(x) =
∑
T30,x

z|T |
∏

(x,y)∈T

D(y − x), P(T ) =
z
|T |
c

ρzc(0)

∏
(x,y)∈T

D(y − x)

where zc is radius of convergence of ρzc(0).
B Survival probability: Nn is number of vertices at tree distance n
from origin, and θn = θn(zc) = P(Nn ≥ 1).



Main result
Theorem 1 (Kolmogorov’s and Yaglom’s Theorem)
Let L� 1, and d > 4 for oriented percolation and contact process,
and d > 8 for lattice trees. Then, there exist A, V > 0 s.t.

lim
n→∞

nθn = 2/(AV ),

and, conditionally on Nn > 0,

Nn/n
d−→ Exp(2/(AV )).

Interpretation (vdH-Slade03, vdH-Sakai10, Holmes08):

A = lim
n→∞

E[Nn], V A3 = lim
n→∞

E[N 2
n]/n.

Oriented percolation: reproves result vdH-den Hollander-Slade
(07a,07b: ± 100 pages), at expense of weaker error estimates.



Proof: three conditions
Condition 1 (Cluster tail bound) There exists CC s.t.

P
(∑
n≥1

Nn ≥ k
)
≤ CC/

√
k.

Condition 2 (Self-repellence survival property) Let Fm be σ-field
generated by vertices at distance ≤ m from 0 and Nm their number.
Then there exists Cθ s.t. for every stopping time M ≤ n,

P(0 −→ n | FM) ≤ CθNMθn−M .

Condition 3 (Convergence r-point functions) There exist A, V > 0

s.t. for each r ≥ 2 and ~t ∈ R(r−1)
+ ,

n−(r−2)E[
r−1∏
i=1

Ntin]→ A(V A2)r−2M̂ (r−1)
~t

(0), as n→∞,

where M̂ (r−1)
~t

(0) are moments total mass super-Brownian Motion.



General result
Theorem 2 (Kolmogorov’s and Yaglom’s Theorem)
When Conditions 1-3 hold,

lim
n→∞

nθn = 2/(AV ),

and, conditionally on Nn > 0,

Nn/n
d−→ Exp(2/(AV )).

B Proof relies on lace expansion results formulated in Conditions 1
and 3, but does not use lace expansion itself.



Proof structure
Conditions 1-3 follow from lace expansion results:

B Condition 1 is δ = 2 which follows from triangle condition OP, CP
(Aizenman-Newman 84), Derbez-Slade (97,98) for lattice trees.

B Condition 2 is Markov property for OP/CP, self-repellence for LT.

B Condition 3 is convergence r-point functions to SBM moment
measures: vdH-Slade (03), vdH-Sakai (10), Holmes (08).

Proof structure:
(a) Upper bound using Conditions 1 and 2, similar to Kozma-
Nachmias (09);
(b) Weak convergence arguments using Condition 3, extending
ideas from Holmes-Perkins (07).



Upper bound
Investigate θ4n. Split according to whether there exists j ∈ [n, 3n]

s.t. 1 ≤ Nj ≤ εn, where ε > 0 is chosen later.

If such j does not exist, then
∑

j≥1Nj ≥ 2εn2. Otherwise, let stop-
ping time J be first. Leads to

θ4n ≤ P(
∑
j≥1

Nj ≥ 2εn2) + P
(
0 −→ 4n, J ∈ [n, 3n]

)
.

Use Condition 1 for first term. For second term, by Condition 2,

θ4n ≤ CC/
√
2εn2 + CθE

[
θ4n−JNJ1{J∈[n,3n]}

]
.

By monotonicity of n 7→ θn and bound NJ ≤ εn,

θ4n ≤ CC/
√
2εn2 + CθεnθnP(J ∈ [n, 3n]) ≤ CC/

√
2εn2 + Cθεnθ

2
n.

Claim follows from induction in n.



Lower bound convergence
Rescale time by n and space by

√
n :

X (n)

t (f ) =
1

V A2n

∑
x∈Ant

f (x/
√
vn), and µn(·) = nV AP(·).

Let X (n)
s (1) = Nsn/n. Then Condition 3 implies [Holmes+Perkins 07]

Eµn
[
1{X(n)

s (1)>η}H(X (n)

t (1))
]
→ EN0

[
1{Xs(1)>η}H(Xt(1))

]
,

where (Xs(1))s≥0 is total mass canonical measure of SBM.

In particular,
N0(Xt(1) > 0) = 2/t,

so that, as η ↘ 0,

lim inf
n→∞

nθn ≥ (AV )−1Eµn
[
1{X(n)

1 (1)>η}

]
→ (AV )−1N0(X1(1) > η)→ 2/(AV ).



Upper bound convergence
By upper bound on nθn, exists subsequence (nk)k≥1 s.t.

nkθnk → lim sup
n

nθn ≡ b, (1− δ)nkθ(1−δ)nk → bδ,

where, by lower bound, b, bδ ≥ 2/AV. Key split:

nkθnk= nkP(N(1−δ)nk > εnk, Nnk > ε′nk)

+nkP(0 < N(1−δ)nk ≤ εnk, Nnk > 0)

+nkP(N(1−δ)nk > εnk, 0 < Nnk ≤ ε′nk).

Weak convergence: first term→ 2/(AV ) when k →∞, δ, ε, ε′ ↘ 0.

Condition 2: second term→ 0 when k →∞, δ, ε, ε′ ↘ 0.

Condition 3: third term→ 0 where limits are taken in order k →∞,
ε′ ↘ 0, ε↘ 0, δ ↘ 0.

B Relies on fact that N0(X1(1) = 0 | X1−δ(1) > 0) = δ together
with weak convergence arguments for (N(1−δ)n/n,Nn/n) on event
N(1−δ)n/n > ε.



Conclusions & extensions
B Proof relies on simple weak convergence estimates.
Rather general. For example, also applies to voter model in d > 2.

B Holmes-Perkins 07: Convergence in finite-dimensional distribu-
tions to canonical measure super-Brownian motion (CSBM) fol-
lows.

CSBM is scaling limit critical branching random walk started from
single individual, where
B particles split or die as in branching process;
B particles move according to random walk;
B probability measure is multiplied by a factor n.

B Percolation. Would extend Kozma-Nachmias to right constant.
Problem: Scaling r-point functions in Condition 3 yet unknown.



Conclusions & extensions
B Tightness: General lace expansion criterion vdH-Holmes-
Perkins (2015). Involves condition on five-point function.
Verified for lattice trees above 8 dimensions.
Tightness for oriented percolation? Incipient infinite structures?

B Extrinsic one-arm probabilities:
Identified for percolation in high-dim by Kozma-Nachmias (2011):

Ppc(0 −→ Qc
r) � r−2.

Results imply lower bound with correct constant.

B Long-range percolation:
Heydenreich-vdH-Hulshof (2014): Identified lower bound in long-
range setting, Hulshof (2015) matching upper bound

Ppc(0 −→ Qc
r) � r−(α∧4)/2,

when Ppc({x, y} occ.) ∼ |x− y|−(d+α).
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