Multiple imputation in Cox regression when there are time-varying effects of exposures

Ruth Keogh

Department of Medical Statistics London School of Hygiene and Tropical Medicine

Bristol, 5 February 2016

Outline

- 1. Handling missing data on explanatory variables in Cox regression
- 2. Modelling time-varying effects in Cox regression
- 3. Derive an imputation model which handles time-varying effects
- 4. Simulation study
- 5. An application
- 6. An alternative approach
- 7. Further work

Outline

- 1. Handling missing data on explanatory variables in Cox regression
- 2. Modelling time-varying effects in Cox regression
- 3. Derive an imputation model which handles time-varying effects
- 4. Simulation study
- 5. An application
- 6. An alternative approach
- 7. Further work

- Aim: To fit an analysis model $Y \sim X, Z$
- Missing data in explanatory variables is a very common problem in epidemiology
- Basic approach: Complete case analysis

Multiple imputation (MI)

For a partially missing exposure X, fully observed covariates Z

- 1. Draw values of X from X|Z, Y
- 2. Obtain several imputed data sets
- 3. Fit the analysis model in each imputed data set and combine parameter estimates using Rubin's Rules

- Aim: To fit an analysis model $Y \sim X, Z$
- Missing data in explanatory variables is a very common problem in epidemiology
- Basic approach: Complete case analysis

Multiple imputation (MI)

For a partially missing exposure X, fully observed covariates Z

- 1. Draw values of X from X|Z, Y
- 2. Obtain several imputed data sets
- 3. Fit the analysis model in each imputed data set and combine parameter estimates using Rubin's Rules

- Aim: To fit an analysis model $Y \sim X, Z$
- Missing data in explanatory variables is a very common problem in epidemiology
- Basic approach: Complete case analysis

Multiple imputation (MI)

For a partially missing exposure X, fully observed covariates Z

- 1. Draw values of X from X|Z, Y
- 2. Obtain several imputed data sets
- 3. Fit the analysis model in each imputed data set and combine parameter estimates using Rubin's Rules

Main challenge

What is the distribution of X|Z, Y?

Example: Linear regression

$$Y = \beta_0 + \beta_X X + \beta_Z Z + \varepsilon$$

- If $Y|X, Z \sim \text{Normal}$ and $X|Z \sim \text{Normal}$ then $X|Z, Y \sim \text{Normal}$
- Imputation model: $X = \alpha_0 + \alpha_1 Z + \alpha_2 Y + \delta$

- 1. Obtain estimates $\hat{\alpha}_0, \hat{\alpha}_1, \hat{\alpha}_2, \hat{\sigma}_{\delta}^2$, and their variances/covariances
- 2. Draw values $\hat{\alpha}_0^{(m)}, \hat{\alpha}_1^{(m)}, \hat{\alpha}_2^{(m)}, \hat{\sigma}_{\delta}^{2(m)}$ from their estimated distn
- 3. The *m*th imputation of X is

$$X^{(m)} = \hat{\alpha}_0^{(m)} + \hat{\alpha}_1^{(m)} Z + \hat{\alpha}_2^{(m)} Y + \delta^*$$

Main challenge

What is the distribution of X|Z, Y?

Example: Linear regression

$$Y = \beta_0 + \beta_X X + \beta_Z Z + \varepsilon$$

- If $Y|X, Z \sim \text{Normal}$ and $X|Z \sim \text{Normal}$ then $X|Z, Y \sim \text{Normal}$
- Imputation model: $X = \alpha_0 + \alpha_1 Z + \alpha_2 Y + \delta$

- 1. Obtain estimates $\hat{\alpha}_0, \hat{\alpha}_1, \hat{\alpha}_2, \hat{\sigma}_{\delta}^2$, and their variances/covariances
- 2. Draw values $\hat{\alpha}_0^{(m)}, \hat{\alpha}_1^{(m)}, \hat{\alpha}_2^{(m)}, \hat{\sigma}_{\delta}^{2(m)}$ from their estimated distn
- 3. The *m*th imputation of X is

$$X^{(m)} = \hat{\alpha}_0^{(m)} + \hat{\alpha}_1^{(m)} Z + \hat{\alpha}_2^{(m)} Y + \delta^*$$

Main challenge

What is the distribution of X|Z, Y?

Example: Linear regression

$$Y = \beta_0 + \beta_X X + \beta_Z Z + \varepsilon$$

- If $Y|X, Z \sim \text{Normal}$ and $X|Z \sim \text{Normal}$ then $X|Z, Y \sim \text{Normal}$
- Imputation model: $X = \alpha_0 + \alpha_1 Z + \alpha_2 Y + \delta$

- 1. Obtain estimates $\hat{\alpha}_0, \hat{\alpha}_1, \hat{\alpha}_2, \hat{\sigma}_\delta^2,$ and their variances/covariances
- 2. Draw values $\hat{\alpha}_0^{(m)}, \hat{\alpha}_1^{(m)}, \hat{\alpha}_2^{(m)}, \hat{\sigma}_\delta^{2(m)}$ from their estimated distn
- 3. The *m*th imputation of X is

$$X^{(m)} = \hat{\alpha}_0^{(m)} + \hat{\alpha}_1^{(m)} Z + \hat{\alpha}_2^{(m)} Y + \delta^*$$

Main challenge

What is the distribution of X|Z, Y?

Example: Linear regression

$$Y = \beta_0 + \beta_X X + \beta_Z Z + \varepsilon$$

- If $Y|X, Z \sim \text{Normal}$ and $X|Z \sim \text{Normal}$ then $X|Z, Y \sim \text{Normal}$
- Imputation model: $X = \alpha_0 + \alpha_1 Z + \alpha_2 Y + \delta$

Steps

- 1. Obtain estimates $\hat{\alpha}_0, \hat{\alpha}_1, \hat{\alpha}_2, \hat{\sigma}^2_{\delta}$, and their variances/covariances
- 2. Draw values $\hat{\alpha}_0^{(m)}, \hat{\alpha}_1^{(m)}, \hat{\alpha}_2^{(m)}, \hat{\sigma}_{\delta}^{2(m)}$ from their estimated distn

3. The *m*th imputation of X is

$$X^{(m)} = \hat{\alpha}_0^{(m)} + \hat{\alpha}_1^{(m)} Z + \hat{\alpha}_2^{(m)} Y + \delta^*$$

Main challenge

What is the distribution of X|Z, Y?

Example: Linear regression

$$Y = \beta_0 + \beta_X X + \beta_Z Z + \varepsilon$$

- If $Y|X, Z \sim \text{Normal}$ and $X|Z \sim \text{Normal}$ then $X|Z, Y \sim \text{Normal}$
- Imputation model: $X = \alpha_0 + \alpha_1 Z + \alpha_2 Y + \delta$

- 1. Obtain estimates $\hat{\alpha}_0, \hat{\alpha}_1, \hat{\alpha}_2, \hat{\sigma}_{\delta}^2$, and their variances/covariances
- 2. Draw values $\hat{\alpha}_0^{(m)}, \hat{\alpha}_1^{(m)}, \hat{\alpha}_2^{(m)}, \hat{\sigma}_{\delta}^{2(m)}$ from their estimated distn
- 3. The *m*th imputation of X is

$$X^{(m)} = \hat{\alpha}_0^{(m)} + \hat{\alpha}_1^{(m)} Z + \hat{\alpha}_2^{(m)} Y + \delta^*$$

Cox proportional hazards model

 $h(T|X,Z) = h_0(T)e^{\beta_X X + \beta_Z Z}$

- T: Event or censoring time
- D: Event indicator

Distribution of interest for the imputation:

 $X|Z, \underline{outcome}$ Event/censoring time *T*, event indicator *D*

What is this distribution X|Z, T, D??

Cox proportional hazards model

 $h(T|X,Z) = h_0(T)e^{\beta_X X + \beta_Z Z}$

- T: Event or censoring time
- D: Event indicator

Distribution of interest for the imputation:

 $X|Z, \underline{outcome}$

Event/censoring time T, event indicator D

What is this distribution X|Z, T, D??

Cox proportional hazards model

 $h(T|X,Z) = h_0(T)e^{\beta_X X + \beta_Z Z}$

- T: Event or censoring time
- D: Event indicator

Distribution of interest for the imputation:

 $X|Z, \underline{outcome}$

Event/censoring time T, event indicator D

What is this distribution X|Z, T, D??

Previously suggested imputation models:

$X \sim Z + D + T$, $X \sim Z + D + \log T$

STATISTICS IN MEDICINE Statist. Med. 2009; 28:1982–1998 Published online 19 May 2009 in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/sim.3618

Imputing missing covariate values for the Cox model

Ian R. White1, *, † and Patrick Royston2

¹MRC Biostatistics Unit, Institute of Public Health, Robinson Way, Cambridge CB2 0SR, U.K. ²MRC Clinical Trials Unit, Cancer Group, London, U.K.

White and Royston imputation model

$$X \sim Z + D + H_0(T)$$

Cumulative baseline hazard

Previously suggested imputation models:

$X \sim Z + D + T$, $X \sim Z + D + \log T$

STATISTICS IN MEDICINE Statist. Med. 2009; 28:1982–1998 Published online 19 May 2009 in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/sim.3618

Imputing missing covariate values for the Cox model

Ian R. White1, *, † and Patrick Royston2

¹MRC Biostatistics Unit, Institute of Public Health, Robinson Way, Cambridge CB2 0SR, U.K. ²MRC Clinical Trials Unit, Cancer Group, London, U.K.

White and Royston imputation model

$$X \sim Z + D + H_0(T)$$

Cumulative baseline hazard

Outline

- 1. Handling missing data on explanatory variables in Cox regression
- 2. Modelling time-varying effects in Cox regression
- 3. Derive an imputation model which handles time-varying effects
- 4. Simulation study
- 5. An application
- 6. An alternative approach
- 7. Further work

Standard Cox proportional hazards model

 $h(T|X,Z) = h_0(T)e^{\beta_X X + \beta_Z Z}$

 Sometimes we want to study how the effect of the exposure changes over time

Extended Cox model with time-varying effects

 $h(T|X,Z) = h_0(T)e^{\beta_X(T)X + \beta_Z Z}$

This also enables a test of the proportional hazards assumption

Standard Cox proportional hazards model

$$h(T|X,Z) = h_0(T)e^{\beta_X X + \beta_Z Z}$$

 Sometimes we want to study how the effect of the exposure changes over time

Extended Cox model with time-varying effects

$$h(T|X,Z) = h_0(T)e^{\beta_X(T)X + \beta_Z Z}$$

This also enables a test of the proportional hazards assumption

Extended Cox model with time-varying effects

$$h(T|X,Z) = h_0(T)e^{\beta_X(T)X + \beta_Z Z}$$

Smooth pre-specified form: $\beta_X(T) = \beta_X + \beta_{XT} log(T)$

Step function:

$$\beta_X(T) = \begin{cases} \beta_{X1} & 0 < T \le u_1 \\ \beta_{X2} & u_1 < T \le u_2 \\ \beta_{X3} & u_2 < T \le u_3 \\ \beta_{X4} & T > u_3 \end{cases}$$

Extended Cox model with time-varying effects

$$h(T|X,Z) = h_0(T)e^{\beta_X(T)X + \beta_Z Z}$$

Smooth pre-specified form:

 $\beta_X(T) = \beta_X + \beta_{XT} \log(T)$

$$\beta_X(T) = \begin{cases} \beta_{X1} & 0 < T \le u_1 \\ \beta_{X2} & u_1 < T \le u_2 \\ \beta_{X3} & u_2 < T \le u_3 \\ \beta_{X4} & T > u_3 \end{cases}$$

Extended Cox model with time-varying effects

$$h(T|X,Z) = h_0(T)e^{\beta_X(T)X + \beta_Z Z}$$

Restricted cubic spline

$$\beta_X(T) = \beta_{X0} + \beta_{X1}T + \beta_{X2}\left\{ (T - u_1)_+^3 - \left(\frac{(T - u_2)_+^3(u_3 - u_1)}{(u_3 - u_2)} \right) + \left(\frac{(T - u_3)_+^3(u_2 - u_1)}{(u_3 - u_2)} \right) \right\}$$

STATISTICS IN MEDICINE, VOL. 13, 1045-1062 (1994)

ASSESSING TIME-BY-COVARIATE INTERACTIONS IN PROPORTIONAL HAZARDS REGRESSION MODELS USING CUBIC SPLINE FUNCTIONS

KENNETH R. HESS

Department of Patient Studies, Box 214, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas 77030-4095, U.S.A.

Extended Cox model with time-varying effects

$$h(T|X,Z) = h_0(T)e^{\beta_X(T)X + \beta_Z Z}$$

Restricted cubic spline

$$\beta_X(T) = \beta_{X0} + \beta_{X1}T + \beta_{X2}\left\{ (T - u_1)_+^3 - \left(\frac{(T - u_2)_+^3(u_3 - u_1)}{(u_3 - u_2)} \right) + \left(\frac{(T - u_3)_+^3(u_2 - u_1)}{(u_3 - u_2)} \right) \right\}$$

STATISTICS IN MEDICINE, VOL. 13, 1045-1062 (1994)

ASSESSING TIME-BY-COVARIATE INTERACTIONS IN PROPORTIONAL HAZARDS REGRESSION MODELS USING CUBIC SPLINE FUNCTIONS

KENNETH R. HESS

Department of Patient Studies, Box 214, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas 77030-4095, U.S.A.

How do we handle missing data in this situations?

Extended Cox model with time-varying effects

$$h(T|X,Z) = h_0(T)e^{\beta_X(T)X + \beta_Z Z}$$

What is the distribution of X|T, D, Z?

p(X|T,D,Z)

Aims

- 1. Derive an (approximate) imputation model
 - By extending the work of White & Royston
- 2. Assess the performance of the imputation model using simulations

- Investigation of the long-term efficacy of the BCG vaccine for TB
- Time-varying effect investigated for vaccination status:
 - 0-5 yrs
 - 5-10 yrs
 - 10-15 yrs
 - 15+ yrs post-vaccination
- Missing data on vaccination status
- Also missing data on adjustment variables

Outline

- 1. Handling missing data on explanatory variables in Cox regression
- 2. Modelling time-varying effects in Cox regression
- 3. Derive an imputation model which handles time-varying effects
- 4. Simulation study
- 5. An application
- 6. An alternative approach
- 7. Further work

Extended Cox model with time-varying effects

 $h(T|X,Z) = h_0(T)e^{\beta_X(T)X + \beta_Z Z}$

p(X|T,D,Z) = p(X|Z)p(T,D|X,Z)/p(T,D|Z)

We will specify

 $\propto h(T|X,Z)^D \times Pr($ survive to time T|X,Z)

General result

$$\log p(X|T, D, Z) = \log p(X|Z) + D\beta_X(T)X + D\beta_Z Z$$
$$-\int_0^T h_0(u)e^{\beta_X(u)X + \beta_Z Z} du + const$$

Extended Cox model with time-varying effects

 $h(T|X,Z) = h_0(T)e^{\beta_X(T)X + \beta_Z Z}$

p(X|T,D,Z) = p(X|Z)p(T,D|X,Z)/p(T,D|Z)

We will specify

 $\propto h(T|X,Z)^D \times Pr($ survive to time T|X,Z)

General result

$$\log p(X|T, D, Z) = \log p(X|Z) + D\beta_X(T)X + D\beta_Z Z$$
$$-\int_0^T h_0(u) e^{\beta_X(u)X + \beta_Z Z} du + const$$

Extended Cox model with time-varying effects

 $h(T|X,Z) = h_0(T)e^{\beta_X(T)X + \beta_Z Z}$

p(X|T, D, Z) = p(X|Z)p(T, D|X, Z)/p(T, D|Z)We will specify

 $\propto h(T|X,Z)^D \times Pr($ survive to time T|X,Z)

General result

 $\log p(X|T, D, Z) = \log p(X|Z) + D\beta_X(T)X + D\beta_Z Z$ $-\int_0^T h_0(u) e^{\beta_X(u)X + \beta_Z Z} du + const$

Extended Cox model with time-varying effects

 $h(T|X,Z) = h_0(T)e^{\beta_{\chi}(T)X + \beta_{Z}Z}$

$$p(X|T, D, Z) = p(X|Z)p(T, D|X, Z)/p(T, D|Z)$$

We will specify
$$\propto h(T|X, Z)^D \times Pr(\text{survive to time } T|X, Z)$$

General result

$$\log p(X|T, D, Z) = \log p(X|Z) + D\beta_X(T)X + D\beta_Z Z$$
$$-\int_0^T h_0(u) e^{\beta_X(u)X + \beta_Z Z} du + const$$

Extended Cox model with time-varying effects

 $h(T|X,Z) = h_0(T)e^{\beta_{\chi}(T)X + \beta_{Z}Z}$

$$p(X|T, D, Z) = p(X|Z)p(T, D|X, Z)/p(T, D|Z)$$
We will specify
$$\propto h(T|X, Z)^D \times Pr(\text{survive to time } T|X, Z)$$

General result

$$\log p(X|T, D, Z) = \log p(X|Z) + D\beta_X(T)X + D\beta_Z Z$$
$$-\int_0^T h_0(u) e^{\beta_X(u)X + \beta_Z Z} du + const$$

General result

$$\log p(X|T, D, Z) = \log p(X|Z) + D\beta_X(T)X + D\beta_Z Z$$
$$-\int_0^T h_0(u)e^{\beta_X(u)X + \beta_Z Z} du + const$$

How do we apply this when ...?

1. X is binary

logit
$$\Pr(X = 1|Z) = \zeta_0 + \zeta_1 Z$$

2. X is Normally distributed given Z

$$X|Z \sim N(\zeta_0 + \zeta_1 Z, \sigma^2)$$

General result

$$\log p(X|T, D, Z) = \log p(X|Z) + D\beta_X(T)X + D\beta_Z Z$$
$$- \int_0^T h_0(u) e^{\beta_X(u)X + \beta_Z Z} du + const$$

ogit
$$\rho(X = 1|Z) = \zeta_0 + \zeta_1 Z$$

 $e^{\beta_X(\bar{u})} \approx e^{\beta_X(\bar{u})} + (u - \bar{u})\beta'_X(\bar{u})e^{\beta_X(\bar{u})}$

Imputation model: Z categorical

logit $p(X = 1 | T, D, Z) \approx \alpha_0 + \alpha_1 Z + \alpha_2 D\beta_X(T)$ + $\alpha_3 H_0(T) + \alpha_5 Z H_0(T) + \alpha_4 H_0^{(1)}(T) + \alpha_6 Z H_0^{(1)}(T)$

General result

$$\log p(X|T, D, Z) = \log p(X|Z) + D\beta_X(T)X + D\beta_Z Z$$
$$= \int_0^T h_0(u) e^{\beta_X(u)X + \beta_Z Z} du + const$$

logit
$$p(X = 1|Z) = \zeta_0 + \zeta_1 Z$$

 $e^{\beta_X(u)} \approx e^{\beta_X(\bar{u})} + (u - \bar{u})\beta'_X(\bar{u})e^{\beta_X(\bar{u})}$

Imputation model: Z categorical

logit $p(X = 1 | T, D, Z) \approx \alpha_0 + \alpha_1 Z + \alpha_2 D\beta_X(T)$ + $\alpha_3 H_0(T) + \alpha_5 Z H_0(T) + \alpha_4 H_0^{(1)}(T) + \alpha_6 Z H_0^{(1)}(T)$

General result

$$\log p(X|T, D, Z) = \log p(X|Z) + D\beta_X(T)X + D\beta_Z Z$$
$$- \int_0^T h_0(u) e^{\beta_X(u)X + \beta_Z Z} du + const$$
$$\log t p(X = 1|Z) = \zeta_0 + \zeta_1 Z$$
$$e^{\beta_X(u)} \approx e^{\beta_X(\bar{u})} + (u - \bar{u})\beta'_X(\bar{u})e^{\beta_X(\bar{u})}$$

Imputation model: Z categorical

logit
$$p(X = 1 | T, D, Z) \approx \alpha_0 + \alpha_1 Z + \alpha_2 D\beta_X(T)$$

+ $\alpha_3 H_0(T) + \alpha_5 Z H_0(T) + \alpha_4 H_0^{(1)}(T) + \alpha_6 Z H_0^{(1)}(T)$

General result

$$\log p(X|T, D, Z) = \log p(X|Z) + D\beta_X(T)X + D\beta_Z Z$$
$$- \int_0^T h_0(u) e^{\beta_X(u)X + \beta_Z Z} du + const$$
$$\log p(X = 1|Z) = \zeta_0 + \zeta_1 Z$$
$$e^{\beta_X(u)} \approx e^{\beta_X(\bar{u})} + (u - \bar{u})\beta'_X(\bar{u})e^{\beta_X(\bar{u})}$$

Imputation model: Z categorical

logit $p(X = 1 | T, D, Z) \approx \alpha_0 + \alpha_1 Z + \alpha_2 D\beta_X(T)$ + $\alpha_3 H_0(T) + \alpha_5 Z H_0(T) + \alpha_4 H_0^{(1)}(T) + \alpha_6 Z H_0^{(1)}(T)$

General result

$$\log p(X|T, D, Z) = \log p(X|Z) + D\beta_X(T)X + D\beta_Z Z$$
$$- \int_0^T h_0(u) e^{\beta_X(u)X + \beta_Z Z} du + const$$
$$\log p(X = 1|Z) = \zeta_0 + \zeta_1 Z$$
$$e^{\beta_X(u)} \approx e^{\beta_X(\bar{u})} + (u - \bar{u})\beta'_X(\bar{u})e^{\beta_X(\bar{u})}$$

Imputation model: Z categorical

$$\begin{aligned} \text{logit } p(X = 1 | T, D, Z) &\approx \alpha_0 + \alpha_1 Z + \alpha_2 D\beta_X(T) \\ + \alpha_3 H_0(T) + \alpha_5 Z H_0(T) + \alpha_4 H_0^{(1)}(T) + \alpha_6 Z H_0^{(1)}(T) \\ H_0(T) &= \int_0^T h_0(u) du \end{aligned}$$

nputation model: Z continuous logit $p(X = 1 | T, D, Z) \approx \alpha_0 + \alpha_1 Z + \alpha_2 D \beta_X (T)$ $\alpha_3 H_0(T) + \alpha_5 Z H_0(T) + \alpha_4 H_0^{(1)}(T) + \alpha_6 Z H_0^{(1)}$

Imputation model: Z continuous logit $p(X = 1 | T, D, Z) \approx \alpha_0 + \alpha_1 Z + \alpha_2 D\beta_X(T) + \alpha_3 H_0(T) + \alpha_5 Z H_0(T) + \alpha_4 H_0^{(1)}(T) + \alpha_6 Z H_0^{(1)}(T)$

General result

$$\log p(X|T, D, Z) = \log p(X|Z) + D\beta_X(T)X + D\beta_Z Z$$

$$- \int_0^T h_0(u)e^{\beta_X(u)X + \beta_Z Z} du + const$$

$$\log t p(X = 1|Z) = \zeta_0 + \zeta_1 Z$$

$$e^{\beta_Z Z} \approx e^{\beta_Z \overline{Z}} + (Z - \overline{Z})\beta_Z e^{\beta_Z \overline{Z}}$$

$$e^{\beta_X(u)} \approx e^{\beta_X(\overline{u})} + (u - \overline{u})\beta'_X(\overline{u})e^{\beta_X(\overline{u})}$$

Imputation model: *Z* continuous

logit
$$p(X = 1|T, D, Z) \approx \alpha_0 + \alpha_1 Z + \alpha_2 D\beta_X(T) + \alpha_3 H_0(T) + \alpha_5 Z H_0(T) + \alpha_4 H_0^{(1)}(T) + \alpha_6 Z H_0^{(1)}(T)$$

General result

$$\log p(X|T, D, Z) = \log p(X|Z) + D\beta_X(T)X + D\beta_Z Z$$
$$-\int_0^T h_0(u)e^{\beta_X(u)X + \beta_Z Z} du + const$$

 $X|Z \sim N(\zeta_0 + \zeta_1 Z, \sigma^2)$

linear or quadratic approximation for $e^{\beta_X(u)X + \beta_Z Z}$

Imputation model: a linear regression

 $X = \alpha_0 + \alpha_1 Z + \alpha_2 D\beta_X(T) + \alpha_3 H_0(T)$ $+ \alpha_5 Z H_0(T) + \alpha_4 H_0^{(1)}(T) + \alpha_6 Z H_0^{(1)}(T) + \varepsilon$

General result

$$\log p(X|T, D, Z) = \log p(X|Z) + D\beta_X(T)X + D\beta_Z Z$$
$$-\int_0^T h_0(u)e^{\beta_X(u)X + \beta_Z Z} du + const$$

 $X|Z \sim N(\zeta_0 + \zeta_1 Z, \sigma^2)$

linear or quadratic approximation for $e^{\beta_X(u)X+\beta_Z Z}$

Imputation model: a linear regression

$$X = \alpha_0 + \alpha_1 Z + \alpha_2 D\beta_X(T) + \alpha_3 H_0(T)$$
$$+ \alpha_5 Z H_0(T) + \alpha_4 H_0^{(1)}(T) + \alpha_6 Z H_0^{(1)}(T) + \varepsilon$$

General result

$$\log p(X|T, D, Z) = \log p(X|Z) + D\beta_X(T)X + D\beta_Z Z$$
$$-\int_0^T h_0(u)e^{\beta_X(u)X + \beta_Z Z} du + const$$

 $X|Z \sim N(\zeta_0 + \zeta_1 Z, \sigma^2)$

linear or quadratic approximation for $e^{\beta_X(u)X+\beta_Z Z}$

Imputation model: a linear regression

$$X = \alpha_0 + \alpha_1 Z + \alpha_2 D\beta_X(T) + \alpha_3 H_0(T)$$
$$+ \alpha_5 Z H_0(T) + \alpha_4 H_0^{(1)}(T) + \alpha_6 Z H_0^{(1)}(T) + \varepsilon$$

General result

$$\log p(X|T, D, Z) = \log p(X|Z) + D\beta_X(T)X + D\beta_Z Z$$
$$-\int_0^T h_0(u)e^{\beta_X(u)X + \beta_Z Z} du + const$$

 $X|Z \sim N(\zeta_0 + \zeta_1 Z, \sigma^2)$

linear or quadratic approximation for $e^{\beta_X(u)X+\beta_Z Z}$

Imputation model: a linear regression

$$X = \alpha_0 + \alpha_1 Z + \alpha_2 D\beta_X(T) + \alpha_3 H_0(T)$$
$$+ \alpha_5 Z H_0(T) + \alpha_4 H_0^{(1)}(T) + \alpha_6 Z H_0^{(1)}(T) + \varepsilon$$

Imputation model

$\begin{aligned} \text{logit } p(X = 1 | T, D, Z) &\approx \alpha_0 + \alpha_1 Z + \alpha_2 D\beta_X(T) + \alpha_3 H_0(T) \\ &+ \alpha_5 Z H_0(T) + \alpha_4 H_0^{(1)}(T) + \alpha_6 Z H_0^{(1)}(T) \end{aligned}$

Breslow's estimate

$$\widehat{H}_0(T) = \sum_{t \le T} \frac{1}{\sum_{R(t)} e^{\widehat{\beta}_X(t)X + \widehat{\beta}_Z Z}}$$

The Nelson-Aalen estimate

$$\widehat{H}(T) = \sum_{t \leq T} \frac{\text{number of events at } t}{\text{number at risk at } t}$$

$$\widehat{H}^{(1)}(T) = \sum_{t \leq T} \frac{t \times \text{number of events at } t}{\text{number at risk at } t}$$

Imputation model

logit
$$p(X = 1 | T, D, Z) \approx \alpha_0 + \alpha_1 Z + \alpha_2 D\beta_X(T) + \alpha_3 H_0(T)$$

 $+ \alpha_5 Z H_0(T) + \alpha_4 H_0^{(1)}(T) + \alpha_6 Z H_0^{(1)}(T)$

Breslow's estimate

$$\widehat{H}_{0}(T) = \sum_{t \leq T} \frac{1}{\sum_{R(t)} e^{\widehat{\beta}_{X}(t)X + \widehat{\beta}_{Z}Z}}$$

The Nelson-Aalen estimate

$$\widehat{H}(T) = \sum_{t \le T} \frac{\text{number of events at } t}{\text{number at risk at } t}$$

$$\widehat{H}^{(1)}(T) = \sum_{t \le T} \frac{t \times \text{number of events at } t}{\text{number at risk at } t}$$

Imputation model

logit
$$p(X = 1 | T, D, Z) \approx \alpha_0 + \alpha_1 Z + \alpha_2 D\beta_X(T) + \alpha_3 H_0(T)$$

 $+ \alpha_5 Z H_0(T) + \alpha_4 H_0^{(1)}(T) + \alpha_6 Z H_0^{(1)}(T)$

Breslow's estimate

$$\widehat{H}_{0}(T) = \sum_{t \leq T} \frac{1}{\sum_{R(t)} e^{\widehat{\beta}_{X}(t)X + \widehat{\beta}_{Z}Z}}$$

The Nelson-Aalen estimate

$$\widehat{H}(T) = \sum_{t \le T} \frac{\text{number of events at } t}{\text{number at risk at } t}$$

$$\widehat{H}^{(1)}(T) = \sum_{t \le T} \frac{t \times \text{number of events at } t}{\text{number at risk at } t}$$

Imputation model

logit
$$p(X = 1 | T, D, Z) \approx \alpha_0 + \alpha_1 Z + \alpha_2 D\beta_X(T) + \alpha_3 H_0(T)$$

 $+ \alpha_5 Z H_0(T) + \alpha_4 H_0^{(1)}(T) + \alpha_6 Z H_0^{(1)}(T)$

Breslow's estimate

$$\widehat{H}_{0}(T) = \sum_{t \leq T} \frac{1}{\sum_{R(t)} e^{\widehat{\beta}_{X}(t)X + \widehat{\beta}_{Z}Z}}$$

The Nelson-Aalen estimate

$$\widehat{H}(T) = \sum_{t \le T} \frac{\text{number of events at } t}{\text{number at risk at } t}$$

$$\widehat{H}^{(1)}(T) = \sum_{t \le T} \frac{t \times \text{number of events at } t}{\text{number at risk at } t}$$

Imputation model

logit
$$p(X = 1 | T, D, Z) \approx \alpha_0 + \alpha_1 Z + \alpha_2 D\beta_X(T) + \alpha_3 \widehat{H}(T)$$

 $+ \alpha_5 Z \widehat{H}(T) + \alpha_4 \widehat{H}^{(1)}(T) + \alpha_6 Z \widehat{H}^{(1)}(T)$

Breslow's estimate

$$\widehat{H}_{0}(T) = \sum_{t \leq T} \frac{1}{\sum_{R(t)} e^{\widehat{\beta}_{X}(t)X + \widehat{\beta}_{Z}Z}}$$

The Nelson-Aalen estimate

$$\widehat{H}(T) = \sum_{t \le T} \frac{\text{number of events at } t}{\text{number at risk at } t}$$

$$\widehat{H}^{(1)}(T) = \sum_{t \leq T} \frac{t \times \text{number of events at } t}{\text{number at risk at } t}$$

Imputation model

logit $p(X = 1 | T, D, Z) \approx \alpha_0 + \alpha_1 Z + \alpha_2 D\beta_X(T) + \alpha_3 \widehat{H}(T)$ $+ \alpha_5 Z \widehat{H}(T) + \alpha_4 \widehat{H}^{(1)}(T) + \alpha_6 Z \widehat{H}^{(1)}(T)$

mice in R, mi impute in Stata

In simulations we investigate...

- What happens if we ignore the time-varying effect in the imputation (White & Royston method)?
- When are the $\hat{H}^{(1)}$ terms needed?
- When are the interactions terms needed?
- Does the approximation required for the linear regression situation perform well?

Imputation model

logit $p(X = 1 | T, D, Z) \approx \alpha_0 + \alpha_1 Z + \alpha_2 D\beta_X(T) + \alpha_3 \widehat{H}(T)$ $+ \alpha_5 Z \widehat{H}(T) + \alpha_4 \widehat{H}^{(1)}(T) + \alpha_6 Z \widehat{H}^{(1)}(T)$

mice in R, mi impute in Stata

In simulations we investigate...

- What happens if we ignore the time-varying effect in the imputation (White & Royston method)?
- When are the $\hat{H}^{(1)}$ terms needed?
- When are the interactions terms needed?
- Does the approximation required for the linear regression situation perform well?

Specific example: log time interaction analysis

Imputation model

logit $p(X = 1|T, D, Z) \approx \alpha_0 + \alpha_1 Z + \alpha_{21} D + \alpha_{22} D \log(T) + \alpha_3 \widehat{H}(T)$ $+ \alpha_4 \widehat{H}^{(1)}(T) + \alpha_5 Z \widehat{H}(T) + \alpha_6 Z \widehat{H}^{(1)}(T)$ Extended Cox model with time-varying effects

$$h(T|X,Z) = h_0(T)e^{\beta_X(T)X + \beta_Z Z}$$

- Often we will have missing data in Z as well as X
- This can be handled using multiple imputation by chained equations (MICE), aka fully conditional specification (FCS)
- We specify models for
 - X|Z,T,D
 - ► *Z*|*X*,*T*,*D*

Outline

- 1. Handling missing data on explanatory variables in Cox regression
- 2. Modelling time-varying effects in Cox regression
- 3. Derive an imputation model which handles time-varying effects
- 4. Simulation study
- 5. An application
- 6. An alternative approach
- 7. Further work

- Cohort of 5000 people followed for 10 years
- Binary or normally distributed exposure X
- ▶ Normally distributed covariate Z: corr(X, Z) = 0.5

- 10% have the event
- Missing data in 20% of X and 20% of Z (MCAR)

- Cohort of 5000 people followed for 10 years
- Binary or normally distributed exposure X
- ▶ Normally distributed covariate Z: corr(X, Z) = 0.5

Hazard model

 $h(T|X,Z) = \lambda \exp \left\{ \beta_X X + \beta_{XT} X (\log T - \log 5) + \beta_Z Z \right\}$

- 10% have the event
- Missing data in 20% of X and 20% of Z (MCAR)

- Cohort of 5000 people followed for 10 years
- Binary or normally distributed exposure X
- ▶ Normally distributed covariate Z: corr(X, Z) = 0.5

Hazard model

 $h(T|X,Z) = \lambda \exp \left\{ \beta_X X + \beta_{XT} X (\log T - \log 5) + \beta_Z Z \right\}$

- 10% have the event
- Missing data in 20% of X and 20% of Z (MCAR)

Modelling the time-varying effect

- 1. Log-time analysis: $\beta_X(T) = \beta_X + \beta_{XT} \{ \log T \log 5 \}$
- 2. Step function analysis: using 4 time periods

Analyses performed

- 1. Complete-data analysis
- 2. Complete-case analysis
- 3. MI non-time-varying approach: White & Royston method
- 4. MI time-varying approach

Imputation model

 $X = \alpha_0 + \alpha_1 Z + \alpha_{21} D + \alpha_{22} D \log(T) + \alpha_3 \widehat{H}(T)$ $+ \alpha_4 \widehat{H}^{(1)}(T) + \alpha_5 Z \widehat{H}(T) + \alpha_6 Z \widehat{H}^{(1)}(T) + \varepsilon$

Modelling the time-varying effect

- 1. Log-time analysis: $\beta_X(T) = \beta_X + \beta_{XT} \{ \log T \log 5 \}$
- 2. Step function analysis: using 4 time periods

Analyses performed

- 1. Complete-data analysis
- 2. Complete-case analysis
- 3. MI non-time-varying approach: White & Royston method
- 4. MI time-varying approach

Imputation model

$$\begin{split} X &= \alpha_0 + \alpha_1 Z + \alpha_{21} D + \alpha_{22} D \log(T) + \alpha_3 \widehat{H}(T) \\ &+ \alpha_4 \widehat{H}^{(1)}(T) + \alpha_5 Z \widehat{H}(T) + \alpha_6 Z \widehat{H}^{(1)}(T) + \varepsilon \end{split}$$

Modelling the time-varying effect

- 1. Log-time analysis: $\beta_X(T) = \beta_X + \beta_{XT} \{ \log T \log 5 \}$
- 2. Step function analysis: using 4 time periods

Analyses performed

- 1. Complete-data analysis
- 2. Complete-case analysis
- 3. MI non-time-varying approach: White & Royston method
- 4. MI time-varying approach

Imputation model

$$X = \alpha_0 + \alpha_1 Z + \alpha_{21} D + \alpha_{22} D\log(T) + \alpha_3 \widehat{H}(T)$$
$$+ \alpha_4 \widehat{H}^{(1)}(T) + \alpha_5 Z \widehat{H}(T) + \alpha_5 Z \widehat{H}^{(1)}(T) + \varepsilon$$

Modelling the time-varying effect

- 1. Log-time analysis: $\beta_X(T) = \beta_X + \beta_{XT} \{ \log T \log 5 \}$
- 2. Step function analysis: using 4 time periods

Analyses performed

- 1. Complete-data analysis
- 2. Complete-case analysis
- 3. MI non-time-varying approach: White & Royston method
- 4. MI time-varying approach

Imputation model

$$\begin{aligned} X &= \alpha_0 + \alpha_1 Z + \alpha_{21} D + \alpha_{22} D \log(T) + \alpha_3 \widehat{H}(T) \\ &+ \alpha_4 \widehat{H}^{(1)}(T) + \alpha_5 Z \widehat{H}(T) + \alpha_6 Z \widehat{H}^{(1)}(T) + \varepsilon \end{aligned}$$

Modelling the time-varying effect

- 1. Log-time analysis: $\beta_X(T) = \beta_X + \beta_{XT} \{ \log T \log 5 \}$
- 2. Step function analysis: using 4 time periods

Analyses performed

- 1. Complete-data analysis
- 2. Complete-case analysis
- 3. MI non-time-varying approach: White & Royston method
- 4. MI time-varying approach

Imputation model

$$X = \alpha_0 + \alpha_1 Z + \alpha_{21} D + \alpha_{22} D\log(T) + \alpha_3 \widehat{H}(T) + \alpha_4 \widehat{H}^{(1)}(T) + \alpha_5 Z \widehat{H}(T) + \alpha_6 Z \widehat{H}^{(1)}(T) + \varepsilon$$

10

 $\beta_X = 0.5, \beta_{XT} = -0.5$ $\beta_Z = 0.5$ Est bias eff Complete data 0.501 0.001 100 βx -0.502 -0.002 100 βxt βz 0.498 -0.002 100 Complete case 0.493 -0.007 63 βx -0.505 -0.005 67 β_{XT} 0.502 βz 0.002 63 Time-varying MI 74 β_X 0.497 -0.003 β_{XT} -0.506 -0.006 87 β_Z 0.500 -0.000 76 Non-time-varying MI 0.492 -0.008 75 βx -0.425 0.075 123 βχτ 0.500 0.000 77 βz

$\beta_X = 0.5, \beta_{XT} = -0.5$						
$\beta_Z = 0.5$						
	Est	bias	eff			
Time	-varying	MI				
β_X	0.497	-0.003	74			
β_{XT}	-0.506	-0.006	87			
β_Z	0.500	-0.000	76			
Time-varying MI: + $\hat{H}^{(1)}(T)$ "						
β_X	0.497	-0.003	75			
β_{XT}	-0.508	-0.008	86			
β_Z	0.499	-0.001	75			
Time-varying MI: + interactions						
β_X	0.497	-0.003	74			
β_{XT}	-0.507	-0.007	86			
β_Z	0.500	0.000	75			

	$eta_X=0.5,eta_{XT}=-0.5$			$\beta_X = 1.$	$.5, \beta_{XT} = -0.5$		
	$\beta_Z = 0.5$			β	$\beta_Z = 0.5$		
	Est	bias	eff	Est	bias	eff	
Time	-varying N	11					
β_X	0.497	-0.003	74	1.485	-0.015	75	
β_{XT}	-0.506	-0.006	87	-0.506	-0.006	89	
β_Z	0.500	-0.000	76	0.498	-0.002	78	
Time-varying MI: + interactions							
β_X	0.497	-0.003	74	1.488	-0.012	75	
β_{XT}	-0.507	-0.007	86	-0.501	-0.001	88	
β_Z	0.500	0.000	75	0.500	0.000	78	

	10%	10% have event			6 have event		
	Est	bias	eff	Est	bias	eff	
Time-varying MI							
β_X	0.497	-0.003	74	0.494	-0.006	78	
β_{XT}	-0.506	-0.006	87	-0.500	-0.000	87	
β_Z	0.500	-0.000	76	0.502	0.002	75	
Time-varying MI: + interactions							
β_X	0.497	-0.003	74	0.496	-0.004	79	
β_{XT}	-0.507	-0.007	86	-0.498	0.002	87	
β_Z	0.500	0.000	75	0.503	0.003	76	

Results: step function analysis

Parameter	Est	% Bias	cov	eff			
Complete case							
β_{X1}	1.116	-0.005	62				
β_{X2}	0.650	-0.005	64				
β_{X3}	0.376	-0.009	65				
β_{X4}	0.214	-0.010	61				
β_Z	0.502	0.002	63				
MI: time-va	ying me	ethod					
β_{X1}	1.121	-0.001	85				
β_{X2}	0.648	-0.007	80				
β_{X3}	0.379	-0.006	79				
β_{X4}	0.218	-0.006	78				
β_Z	0.500	-0.000	76				
MI: non-time-varying method							
β_{X1}	1.019	-0.103	110				
β_{X2}	0.619	-0.036	102				
β_{X3}	0.394	0.009	98				
β_{X4}	0.256	0.033	95				
β_Z	0.500	0.000	76				

Results: step function analysis

Parameter	Est	% Bias	cov	eff	
Complete case					
β_{X1}	1.116	-0.005	62		
β_{X2}	0.650	-0.005	64		
β_{X3}	0.376	-0.009	65		
β_{X4}	0.214	-0.010	61		
β_Z	0.502	0.002	63		
MI: time-va	rying me	ethod			
β_{X1}	1.121	-0.001	85		
β_{X2}	0.648	-0.007	80		
β_{X3}	0.379	-0.006	79		
β_{X4}	0.218	-0.006	78		
β_Z	0.500	-0.000	76		
MI: non-time-varying method					
β_{X1}	1.019	-0.103	110		
β_{X2}	0.619	-0.036	102		
β_{X3}	0.394	0.009	98		
β_{X4}	0.256	0.033	95		
β_Z	0.500	0.000	76		

Results: step function analysis

Parameter	Est	% Bias	cov	eff		
Complete c	ase					
β_{X1}	1.116	-0.005	62			
β_{X2}	0.650	-0.005	64			
β_{X3}	0.376	-0.009	65			
β_{X4}	0.214	-0.010	61			
β_Z	0.502	0.002	63			
MI: time-va	rying me	ethod				
β_{X1}	1.121	-0.001	85			
β_{X2}	0.648	-0.007	80			
β_{X3}	0.379	-0.006	79			
β_{X4}	0.218	-0.006	78			
β_Z	0.500	-0.000	76			
MI: non-time-varying method						
β_{X1}	1.019	-0.103	110			
β_{X2}	0.619	-0.036	102			
β_{X3}	0.394	0.009	98			
β_{X4}	0.256	0.033	95			
β_Z	0.500	0.000	76			

Results: step function analysis

Parameter	Est	% Bias	COV	eff			
Complete case							
β_{X1}	1.116	-0.005	62				
β_{X2}	0.650	-0.005	64				
β_{X3}	0.376	-0.009	65				
β_{X4}	0.214	-0.010	61				
β_Z	0.502	0.002	63				
MI: time-varying method							
β_{X1}	1.121	-0.001	85				
β_{X2}	0.648	-0.007	80				
β_{X3}	0.379	-0.006	79				
β_{X4}	0.218	-0.006	78				
β_Z	0.500	-0.000	76				
MI: non-time-varying method							
β_{X1}	1.019	-0.103	110				
β_{X2}	0.619	-0.036	102				
β_{X3}	0.394	0.009	98				
β_{X4}	0.256	0.033	95				
βz	0.500	0.000	76				

Testing the proportional hazards assumption

Hazard model

Data generated using the hazard model

$$h(T|X,Z) = h_0(T)e^{\beta_X X + \beta_{XT}(\log T - \log 5)X + \beta_Z Z}$$

with $\beta_{XT} = 0$

Percentage of simulations in which the null hypothesis $\beta_{XT} = 0$ was rejected:

Complete data	5.0%
Complete case	5.3%
MI: time-varying method	5.3%
MI: non-timevarying method	2.2%

Outline

- 1. Handling missing data on explanatory variables in Cox regression
- 2. Modelling time-varying effects in Cox regression
- 3. Derive an imputation model which handles time-varying effects
- 4. Simulation study
- 5. An application
- 6. An alternative approach
- 7. Further work

- 2982 individuals with primary breast cancer from the Rotterdam tumour bank
- Individuals followed-up for death/disease recurrence (51%)
- Sauerbrei et al (2007), Royston & Sauerbrei (2008): time-varying effects of two variables
 - tumour size: log(T)
 - ► number of progesterone receptors (log(pgr+1)): log(T)
- I generated missing data for 20% of individuals in both variables

- 2982 individuals with primary breast cancer from the Rotterdam tumour bank
- Individuals followed-up for death/disease recurrence (51%)
- Sauerbrei et al (2007), Royston & Sauerbrei (2008): time-varying effects of two variables
 - tumour size: log(T)
 - number of progesterone receptors (log(pgr+1)): log(T)
- I generated missing data for 20% of individuals in both variables

- 2982 individuals with primary breast cancer from the Rotterdam tumour bank
- Individuals followed-up for death/disease recurrence (51%)
- Sauerbrei et al (2007), Royston & Sauerbrei (2008): time-varying effects of two variables
 - tumour size: log(T)
 - number of progesterone receptors (log(pgr+1)): log(T)
- I generated missing data for 20% of individuals in both variables

- 432 inmates released from state prison followed up for 1 year (Allison et al (2010))
- Factors associated with re-arrest:
 - Age: time-varying effect (linear with time since release)
 - Financial aid: step function, with a step 20-30 weeks after release
 - Prior arrests: no time-varying effect
- 20% missingness introduced in age and financial aid

Outline

- 1. Handling missing data on explanatory variables in Cox regression
- 2. Modelling time-varying effects in Cox regression
- 3. Derive an imputation model which handles time-varying effects
- 4. Simulation study
- 5. An application
- 6. An alternative approach
- 7. Further work

Another approach for imputation under the Cox model

- ► We have focused on an *approximate* imputation model for p(X|T,D,Z)
- This does not extend to allowing non-linear terms (e.g. X²) or interaction terms

Article

Multiple imputation of covariates by fully conditional specification: Accommodating the substantive model

Statistical Methods in Medical Research 0(0) 1-26 © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav DOI: 10.1177/062280214521348 smm.sagepub.com

Jonathan W Bartlett, ¹ Shaun R Seaman,² Ian R White² and James R Carpenter^{1,3} for the Alzheimer's Disease Neuroimaging Initiative*

Another approach for imputation under the Cox model

- ► We have focused on an *approximate* imputation model for p(X|T,D,Z)
- This does not extend to allowing non-linear terms (e.g. X²) or interaction terms

Article

Multiple imputation of covariates by fully conditional specification: Accommodating the substantive model

Statistical Methods in Medical Research 0(0) 1-26 © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav DOI: 10.1177/062280214521348 smm.sagepub.com

Jonathan W Bartlett, ¹ Shaun R Seaman,² Ian R White² and James R Carpenter^{1,3} for the Alzheimer's Disease Neuroimaging Initiative*

The Bartlett et al. approach

Aim

- ► For variable X with missing data and fully-observed variable Z
- ► To impute missing values of X by drawing from the true distribution p(X|T, D, Z)

The basic idea...

- ▶ Draw potential values of X from a proposal distribution p(X|Z)
- ► Use a rejection rule to decide whether or not to accept the potential imputed values of X as imputed values from the desired distribution p(X|T,D,Z)

The method does not currently accommodate time-varying effects of exposures

The Bartlett et al. approach

Aim

- ► For variable X with missing data and fully-observed variable Z
- ► To impute missing values of X by drawing from the true distribution p(X|T, D, Z)

The basic idea...

- Draw potential values of X from a proposal distribution p(X|Z)
- ► Use a rejection rule to decide whether or not to accept the potential imputed values of X as imputed values from the desired distribution p(X|T, D, Z)

The method does not currently accommodate time-varying effects of exposures

The Bartlett et al. approach

Aim

- ► For variable X with missing data and fully-observed variable Z
- ► To impute missing values of X by drawing from the true distribution p(X|T, D, Z)

The basic idea...

- Draw potential values of X from a proposal distribution p(X|Z)
- ► Use a rejection rule to decide whether or not to accept the potential imputed values of X as imputed values from the desired distribution p(X|T, D, Z)

The method does not currently accommodate time-varying effects of exposures

Cox proportional hazards model

 $h(T|X,Z) = h_0(T)e^{\beta_X X + \beta_Z Z}$

- 1. Obtain initial estimates for β_X , β_Z and their covariance
- 2. Draw values $\beta_X^{(m)}, \beta_Z^{(m)}$ from their estimated distribution
- 3. Fit the proposal distribution p(X|Z) and draw parameter values from their estimated joint distribution
- 4. Draw a value X^* from the proposal distribution
- 5. Draw a value $U \sim \text{Uniform}(0,1)$. Accept the value X^* if...

$$\begin{cases} U \le \exp\{-H_0^{(m)}(T)e^{\beta_X^{(m)}X^*+\beta_Z^{(m)}Z}\} & \text{if } D = 0\\ U \le H_0^{(m)}(T)\exp\{1+\beta_X^{(m)}X^*+\beta_Z^{(m)}Z-H_0^{(m)}(T)e^{\beta_X^{(m)}X^*+\beta_Z^{(m)}Z}\} & \text{if } D = 1 \end{cases}$$

$$h(T|X,Z) = h_0(T)e^{\beta_X X + \beta_Z Z}$$

- 1. Obtain initial estimates for β_X, β_Z and their covariance
- 2. Draw values $\beta_X^{(m)}, \beta_Z^{(m)}$ from their estimated distribution
- 3. Fit the proposal distribution p(X|Z) and draw parameter values from their estimated joint distribution
- 4. Draw a value X^* from the proposal distribution
- 5. Draw a value $U \sim \text{Uniform}(0, 1)$. Accept the value X^* if...

$$\begin{cases} U \le \exp\{-H_0^{(m)}(T)e^{\beta_X^{(m)}X^*+\beta_Z^{(m)}Z}\} & \text{if } D = 0\\ U \le H_0^{(m)}(T)\exp\{1+\beta_X^{(m)}X^*+\beta_Z^{(m)}Z-H_0^{(m)}(T)e^{\beta_X^{(m)}X^*+\beta_Z^{(m)}Z}\} & \text{if } D = 1 \end{cases}$$

$$h(T|X,Z) = h_0(T)e^{\beta_X X + \beta_Z Z}$$

- 1. Obtain initial estimates for β_X, β_Z and their covariance
- 2. Draw values $\beta_X^{(m)}, \beta_Z^{(m)}$ from their estimated distribution
- 3. Fit the proposal distribution p(X|Z) and draw parameter values from their estimated joint distribution
- 4. Draw a value X^* from the proposal distribution
- 5. Draw a value $U \sim \text{Uniform}(0, 1)$. Accept the value X^* if...

$$\begin{cases} U \le \exp\{-H_0^{(m)}(T)e^{\beta_X^{(m)}X^*+\beta_Z^{(m)}Z}\} & \text{if } D = 0\\ U \le H_0^{(m)}(T)\exp\{1+\beta_X^{(m)}X^*+\beta_Z^{(m)}Z-H_0^{(m)}(T)e^{\beta_X^{(m)}X^*+\beta_Z^{(m)}Z}\} & \text{if } D = 1 \end{cases}$$

$$h(T|X,Z) = h_0(T)e^{\beta_X X + \beta_Z Z}$$

- 1. Obtain initial estimates for β_X , β_Z and their covariance
- 2. Draw values $\beta_X^{(m)}, \beta_Z^{(m)}$ from their estimated distribution
- 3. Fit the proposal distribution p(X|Z) and draw parameter values from their estimated joint distribution
- 4. Draw a value X^* from the proposal distribution
- 5. Draw a value $U \sim \text{Uniform}(0, 1)$. Accept the value X^* if...

$$\begin{cases} U \le \exp\{-H_0^{(m)}(T)e^{\beta_X^{(m)}X^* + \beta_Z^{(m)}Z}\} & \text{if } D = 0\\ U \le H_0^{(m)}(T)\exp\{1 + \beta_X^{(m)}X^* + \beta_Z^{(m)}Z - H_0^{(m)}(T)e^{\beta_X^{(m)}X^* + \beta_Z^{(m)}Z}\} & \text{if } D = 1 \end{cases}$$

$$h(T|X,Z) = h_0(T)e^{\beta_X X + \beta_Z Z}$$

- 1. Obtain initial estimates for β_X , β_Z and their covariance
- 2. Draw values $\beta_X^{(m)}, \beta_Z^{(m)}$ from their estimated distribution
- 3. Fit the proposal distribution p(X|Z) and draw parameter values from their estimated joint distribution
- 4. Draw a value X^* from the proposal distribution
- 5. Draw a value $U \sim \text{Uniform}(0, 1)$. Accept the value X^* if...

$$\begin{cases} U \le \exp\{-H_0^{(m)}(T)e^{\beta_X^{(m)}X^* + \beta_Z^{(m)}Z}\} & \text{if } D = 0\\ U \le H_0^{(m)}(T)\exp\{1 + \beta_X^{(m)}X^* + \beta_Z^{(m)}Z - H_0^{(m)}(T)e^{\beta_X^{(m)}X^* + \beta_Z^{(m)}Z}\} & \text{if } D = 1 \end{cases}$$

Cox proportional hazards model

$$h(T|X,Z) = h_0(T)e^{\beta_X X + \beta_Z Z}$$

$$\begin{split} &U \leq \exp\{-H_0^{(m)}(T)e^{\beta_X^{(m)}X^*+\beta_Z^{(m)}Z}\} & \text{if } D = 0 \\ &U \leq H_0^{(m)}(T)\exp\{1+\beta_X^{(m)}X^*+\beta_Z^{(m)}Z-H_0^{(m)}(T)e^{\beta_X^{(m)}X^*+\beta_Z^{(m)}Z}\} & \text{if } D = 1 \end{split}$$

Extended Cox model with time-varying effects

$$h(T|X,Z) = h_0(T)e^{\beta_X(T)X + \beta_Z Z}$$

- $U \le \exp\{-\int_{0}^{T} h_{0}(u) e^{\beta_{X}^{(m)} X^{*} + \beta_{Z}^{(m)} Z + \beta_{XT}^{(m)}(u) X^{*}} du\}$
- $U \leq h_0^{(m)}(T) \exp\{1 + \beta_X^{(m)} X^* + \beta_Z^{(m)} Z + \beta_{XT}^{(m)}(T) X^* \int_0^T h_0(u) e^{\beta_X^{(m)} X^* + \beta_Z^{(m)} Z + \beta_{XT}^{(m)}(u) X^*} du\}$
 - The standard approach can be applied in R and Stata using Jonathan Bartlett's package smcfcs

Cox proportional hazards model

$$h(T|X,Z) = h_0(T)e^{\beta_X X + \beta_Z Z}$$

$$\begin{split} &U \leq \exp\{-H_0^{(m)}(T)e^{\beta_X^{(m)}X^*+\beta_Z^{(m)}Z}\} & \text{if } D = 0 \\ &U \leq H_0^{(m)}(T)\exp\{1+\beta_X^{(m)}X^*+\beta_Z^{(m)}Z-H_0^{(m)}(T)e^{\beta_X^{(m)}X^*+\beta_Z^{(m)}Z}\} & \text{if } D = 1 \end{split}$$

Extended Cox model with time-varying effects

$$h(T|X,Z) = h_0(T)e^{\beta_X(T)X + \beta_Z Z}$$

- $U \le \exp\{-\int_0^T h_0(u) e^{\beta_X^{(m)} X^* + \beta_Z^{(m)} Z + \beta_{XT}^{(m)}(u) X^*} du\}$
- $U \leq h_0^{(m)}(T) \exp\{1 + \beta_X^{(m)} X^* + \beta_Z^{(m)} Z + \beta_{XT}^{(m)}(T) X^* \int_0^T h_0(u) e^{\beta_X^{(m)} X^* + \beta_Z^{(m)} Z + \beta_{XT}^{(m)}(u) X^*} du\}$
 - The standard approach can be applied in R and Stata using Jonathan Bartlett's package smcfcs

Extending the Bartlett et al. approach: Some results

Extended Cox model with time-varying effects

 $h(T|X,Z) = h_0(T)e^{\beta_X X + \beta_{XT} \log(T) X + \beta_Z Z}$

- I simulated data for binary X and continuous Z
- Missing data on X were generated for 20% of individuals

	β_X	β_{XT}	β _Z
Complete data	0.47 (0.32)	-0.53 (0.18)	0.51 (0.30)
Complete case	0.46 (0.36)	-0.55 (0.22)	0.44 (0.34)
MI: non-time-varying	0.57 (0.34)	-0.42 (0.15)	0.51 (0.31)
MI: Approx method	0.46 (0.36)	-0.54 (0.21)	0.51 (0.31)
MI: Extended Bartlett	0.47 (0.31)	-0.53 (0.18)	0.51 (0.30)

Outline

- 1. Handling missing data on explanatory variables in Cox regression
- 2. Modelling time-varying effects in Cox regression
- 3. Derive an imputation model which handles time-varying effects
- 4. Simulation study
- 5. An application
- 6. An alternative approach
- 7. Further work

- Everything so far requires us to specify the functional form for the time-varying effects β_X(T)
- An alternative is to somehow select a 'best' functional form
- Sauerbrei et al. (2007), Royston & Sauerbrei (2008): Using fractional polynomials to model time-varying effects

Extended Cox model with time-varying effects

$$h(T|X,Z) = h_0(T)e^{\beta_X(T)X + \beta_Z Z}$$

Using a fractional polynomial of degree 1

$$\beta_X(T) = \beta_{X0} + \beta_{X1} T^p.$$

The best power *p* is selected from set $\{-2, -1, -0.5, 0, 0.5, 1, 2, 3\}$

Aim

- Incorporate MI within this approach
- By allowing accommodating a flexible functional form for $\beta_X(T)$ in the imputation model
- By selecting the best fitting FP using the imputed data sets

Extended Cox model with time-varying effects

$$h(T|X,Z) = h_0(T)e^{\beta_X(T)X + \beta_Z Z}$$

Using a fractional polynomial of degree 1

$$\beta_X(T) = \beta_{X0} + \beta_{X1} T^p.$$

The best power *p* is selected from set $\{-2, -1, -0.5, 0, 0.5, 1, 2, 3\}$

Aim

- Incorporate MI within this approach
- ► By allowing accommodating a flexible functional form for $\beta_X(T)$ in the imputation model
- By selecting the best fitting FP using the imputed data sets

Research Article

Received 13 November 2014,

Accepted 19 May 2015

Published online in Wiley Online Library

(wileyonlinelibrary.com) DOI: 10.1002/sim.6553

Combining fractional polynomial model building with multiple imputation

Tim P. Morris,^{a,b*†} Ian R. White,^c James R. Carpenter,^{a,b} Simon J. Stanworth^d and Patrick Royston^a

- We should incorporate time-varying effects into the imputation model to get unbiased estimates of time-varying effects
- ... and correct tests for proportional hazards
- The approximate approach can be easily applied in standard software and works well in many circumstances
- The extended Bartlett et al. approach has advantages in some situations
 - ...it also allows for nonlinear terms e.g. X^2
- We aim to show how these methods can be used in conjunction with model selection and fractional polynomials

- We should incorporate time-varying effects into the imputation model to get unbiased estimates of time-varying effects
- ... and correct tests for proportional hazards
- The approximate approach can be easily applied in standard software and works well in many circumstances
- The extended Bartlett et al. approach has advantages in some situations
 - ...it also allows for nonlinear terms e.g. X^2
- We aim to show how these methods can be used in conjunction with model selection and fractional polynomials

- We should incorporate time-varying effects into the imputation model to get unbiased estimates of time-varying effects
- ... and correct tests for proportional hazards
- The approximate approach can be easily applied in standard software and works well in many circumstances
- The extended Bartlett et al. approach has advantages in some situations
 - ...it also allows for nonlinear terms e.g. X^2
- We aim to show how these methods can be used in conjunction with model selection and fractional polynomials

- We should incorporate time-varying effects into the imputation model to get unbiased estimates of time-varying effects
- ... and correct tests for proportional hazards
- The approximate approach can be easily applied in standard software and works well in many circumstances
- The extended Bartlett et al. approach has advantages in some situations
 - ...it also allows for nonlinear terms e.g. X²
- We aim to show how these methods can be used in conjunction with model selection and fractional polynomials

For comments on this work

Ian White, Mike Kenward, Tim Morris, Jonathan Bartlett

Funding

MRC Methodology Fellowship