Multiple imputation in Cox regression when there are time-varying effects of exposures

Ruth Keogh

Department of Medical Statistics
London School of Hygiene and Tropical Medicine

Bristol, 5 February 2016

Outline

1. Handling missing data on explanatory variables in Cox regression
2. Modelling time-varying effects in Cox regression
3. Derive an imputation model which handles time-varying effects
4. Simulation study
5. An application
6. An alternative approach
7. Further work

Outline

1. Handling missing data on explanatory variables in Cox regression
2. Modelling time-varying effects in Cox regression
3. Derive an imputation model which handles time-varying effects
4. Simulation study
5. An application
6. An alternative approach
7. Further work

Multiple imputation in general

- Aim: To fit an analysis model $Y \sim X, Z$
- Missing data in explanatory variables is a very common problem in epidemiology
- Basic approach: Complete case analysis

Multiple imputation (MI)
For a partially missing exposure X, fully observed covariates Z
2. Obtain several imputed data sets
3. Fit the analysis model in each imputed data set and combine parameter estimates using Rubin's Rules

Multiple imputation in general

- Aim: To fit an analysis model $Y \sim X, Z$
- Missing data in explanatory variables is a very common problem in epidemiology
- Basic approach: Complete case analysis

Multiple imputation in general

- Aim: To fit an analysis model $Y \sim X, Z$
- Missing data in explanatory variables is a very common problem in epidemiology
- Basic approach: Complete case analysis

Multiple imputation (MI)

For a partially missing exposure X, fully observed covariates Z

1. Draw values of X from $X \mid Z, Y$
2. Obtain several imputed data sets
3. Fit the analysis model in each imputed data set and combine parameter estimates using Rubin's Rules

Multiple imputation in general

Main challenge

What is the distribution of $X \mid Z, Y$?
Example: Linear regression

$$
Y=\beta_{0}+\beta_{X} X+\beta_{Z} Z+\varepsilon
$$

- If $Y \mid X, Z \sim$ Normal and $X \mid Z \sim$ Normal then $X \mid Z, Y \sim$ Normal - Imputation model: $X=\alpha_{0}+\alpha_{1} Z+\alpha_{2} Y+\delta$ Steps

1. Obtain estimates $\hat{\alpha}_{0}, \hat{\alpha}_{1}, \hat{\alpha}_{2}, \hat{\sigma}_{\delta}^{2}$, and their variances/covariances
2. Draw values $\hat{\alpha}_{0}^{(m)}, \hat{\alpha}_{1}^{(m)}, \hat{\alpha}_{2}^{(m)}, \hat{\sigma}_{\delta}^{2(m)}$ from their estimated distn
3. The m th imputation of X is

Multiple imputation in general

Main challenge

What is the distribution of $X \mid Z, Y$?
Example: Linear regression

$$
Y=\beta_{0}+\beta_{X} X+\beta_{Z} Z+\varepsilon
$$

- If $Y \mid X, Z \sim$ Normal and $X \mid Z \sim$ Normal then $X \mid Z, Y \sim$ Normal
- Imputation model: $X=\alpha_{0}+\alpha_{1} Z+\alpha_{2} Y+\delta$

Steps

1. Obtain estimates $\hat{\alpha}_{0}, \hat{\alpha}_{1}, \hat{\alpha}_{2}, \hat{\sigma}_{\delta}^{2}$, and their variances/covariances
2. Draw values $\hat{\alpha}_{0}^{(m)}, \hat{\alpha}_{1}^{(m)}, \hat{\alpha}_{2}^{(m)}, \hat{\sigma}_{\delta}^{2(m)}$ from their estimated distn
3. The m th imputation of X is

Multiple imputation in general

Main challenge

What is the distribution of $X \mid Z, Y$?
Example: Linear regression

$$
Y=\beta_{0}+\beta_{X} X+\beta_{Z} Z+\varepsilon
$$

- If $Y \mid X, Z \sim$ Normal and $X \mid Z \sim$ Normal then $X \mid Z, Y \sim$ Normal
- Imputation model: $X=\alpha_{0}+\alpha_{1} Z+\alpha_{2} Y+\delta$

Steps

1. Obtain estimates $\hat{\alpha}_{0}, \hat{\alpha}_{1}, \hat{\alpha}_{2}, \hat{\sigma}_{\delta}^{2}$, and their variances/covariances
2. Draw values $\hat{\alpha}_{0}^{(m)}, \hat{\alpha}_{1}^{(m)}, \hat{\alpha}_{2}^{(m)}, \hat{\sigma}_{\delta}^{2(m)}$ from their estimated distn
3. The m th imputation of X is

Multiple imputation in general

Main challenge

What is the distribution of $X \mid Z, Y$?
Example: Linear regression

$$
Y=\beta_{0}+\beta_{X} X+\beta_{Z} Z+\varepsilon
$$

- If $Y \mid X, Z \sim$ Normal and $X \mid Z \sim$ Normal then $X \mid Z, Y \sim$ Normal
- Imputation model: $X=\alpha_{0}+\alpha_{1} Z+\alpha_{2} Y+\delta$

Steps

1. Obtain estimates $\hat{\alpha}_{0}, \hat{\alpha}_{1}, \hat{\alpha}_{2}, \hat{\sigma}_{\delta}^{2}$, and their variances/covariances
2. Draw values $\hat{\alpha}_{0}^{(m)}, \hat{\alpha}_{1}^{(m)}, \hat{\alpha}_{2}^{(m)}, \hat{\sigma}_{\delta}^{2(m)}$ from their estimated distn
3. The m th imputation of X is

Multiple imputation in general

Main challenge

What is the distribution of $X \mid Z, Y$?
Example: Linear regression

$$
Y=\beta_{0}+\beta_{X} X+\beta_{Z} Z+\varepsilon
$$

- If $Y \mid X, Z \sim$ Normal and $X \mid Z \sim$ Normal then $X \mid Z, Y \sim$ Normal
- Imputation model: $X=\alpha_{0}+\alpha_{1} Z+\alpha_{2} Y+\delta$

Steps

1. Obtain estimates $\hat{\alpha}_{0}, \hat{\alpha}_{1}, \hat{\alpha}_{2}, \hat{\sigma}_{\delta}^{2}$, and their variances/covariances
2. Draw values $\hat{\alpha}_{0}^{(m)}, \hat{\alpha}_{1}^{(m)}, \hat{\alpha}_{2}^{(m)}, \hat{\sigma}_{\delta}^{2(m)}$ from their estimated distn
3. The m th imputation of X is

$$
X^{(m)}=\hat{\alpha}_{0}^{(m)}+\hat{\alpha}_{1}^{(m)} Z+\hat{\alpha}_{2}^{(m)} Y+\delta^{*}
$$

Multiple imputation in Cox Regression

Cox proportional hazards model

$$
h(T \mid X, Z)=h_{0}(T) e^{\beta_{X} X+\beta_{Z} Z}
$$

- T: Event or censoring time
- D: Event indicator

Distribution of interest for the imputation:
$X \mid Z$, outcome

$$
\text { Event/censoring time } T \text {, event indicator D }
$$

Multiple imputation in Cox Regression

Cox proportional hazards model

$$
h(T \mid X, Z)=h_{0}(T) e^{\beta_{X} X+\beta_{Z} Z}
$$

- T: Event or censoring time
- D: Event indicator

Distribution of interest for the imputation:

$$
X \mid Z \text {, outcome }
$$

Event/censoring time T, event indicator D

Multiple imputation in Cox Regression

Cox proportional hazards model

$$
h(T \mid X, Z)=h_{0}(T) e^{\beta_{X} X+\beta_{Z} Z}
$$

- T: Event or censoring time
- D: Event indicator

Distribution of interest for the imputation:

$$
X \mid Z \text {, outcome }
$$

Event/censoring time T, event indicator D
What is this distribution $X \mid Z, T, D$??

Multiple imputation in Cox Regression

Previously suggested imputation models:

$$
X \sim Z+D+T, \quad X \sim Z+D+\log T
$$

STATISTICS IN MEDICINE
Statist. Med. 2009; 28:1982-1998
Published online 19 May 2009 in Wiley InterScience
(www.interscience.wiley.com) DOI: $10.1002 / \mathrm{sim} .3618$

$$
\begin{aligned}
& \text { Imputing missing covariate values for the Cox model } \\
& \text { Ian R. White }{ }^{1, *, \dagger} \text { and Patrick Royston }{ }^{2} \\
& { }^{1} \text { MRC Biostatistics Unit, Institute of Public Health, Robinson Way, Cambridge CB2 osR, U.K. } \\
& { }^{2} \text { MRC Clinical Trials Unit, Cancer Group, London, U.K. }
\end{aligned}
$$

White and Royston imputation model

Multiple imputation in Cox Regression

Previously suggested imputation models:

$$
X \sim Z+D+T, \quad X \sim Z+D+\log T
$$

STATISTICS IN MEDICINE
Statist. Med. 2009; 28:1982-1998
Published online 19 May 2009 in Wiley InterScience
(www.interscience.wiley.com) DOI: $10.1002 / \mathrm{sim} .3618$

Imputing missing covariate values for the Cox model
Ian R. White ${ }^{1, *, \dagger}$ and Patrick Royston ${ }^{2}$
${ }^{1}$ MRC Biostatistics Unit, Institute of Public Health, Robinson Way, Cambridge CB2 OSR, U.K.
${ }^{2}$ MRC Clinical Trials Unit, Cancer Group, London, U.K.
White and Royston imputation model

$$
X \sim Z+D+H_{0}(T)
$$

Cumulative baseline hazard

Outline

1. Handling missing data on explanatory variables in Cox regression
2. Modelling time-varying effects in Cox regression
3. Derive an imputation model which handles time-varying effects
4. Simulation study
5. An application
6. An alternative approach
7. Further work

Modelling time-varying effects in Cox regression

Standard Cox proportional hazards model

$$
h(T \mid X, Z)=h_{0}(T) e^{\beta_{X} X+\beta_{Z} Z}
$$

- Sometimes we want to study how the effect of the exposure changes over time

$$
h(T \mid X, Z)=h_{0}(T) e^{\beta_{X}}
$$

- This also enables a test of the proportional hazards assumption

Modelling time-varying effects in Cox regression

Standard Cox proportional hazards model

$$
h(T \mid X, Z)=h_{0}(T) e^{\beta_{X} X+\beta_{Z} Z}
$$

- Sometimes we want to study how the effect of the exposure changes over time

Extended Cox model with time-varying effects

$$
h(T \mid X, Z)=h_{0}(T) e^{\beta_{X}(T) X+\beta_{Z} Z}
$$

- This also enables a test of the proportional hazards assumption

Modelling time-varying effects in Cox regression

Extended Cox model with time-varying effects

$$
h(T \mid X, Z)=h_{0}(T) e^{\beta_{X}(T) X+\beta_{Z} Z}
$$

- Smooth pre-specified form:

$$
\beta_{X}(T)=\beta_{X}+\beta_{X T} \log (T)
$$

- Step function:

Modelling time-varying effects in Cox regression

Extended Cox model with time-varying effects

$$
h(T \mid X, Z)=h_{0}(T) e^{\beta_{X}(T) X+\beta_{Z} Z}
$$

- Smooth pre-specified form:

$$
\beta_{X}(T)=\beta_{X}+\beta_{X T} \log (T)
$$

- Step function:

$$
\beta_{X}(T)= \begin{cases}\beta_{X 1} & 0<T \leq u_{1} \\ \beta_{X 2} & u_{1}<T \leq u_{2} \\ \beta_{X 3} & u_{2}<T \leq u_{3} \\ \beta_{X 4} & T>u_{3}\end{cases}
$$

Modelling time-varying effects in Cox regression

Extended Cox model with time-varying effects

$$
h(T \mid X, Z)=h_{0}(T) e^{\beta_{X}(T) X+\beta_{Z} Z}
$$

- Restricted cubic spline

$$
\beta_{X}(T)=\beta_{X 0}+\beta_{X 1} T+\beta_{X 2}\left\{\left(T-u_{1}\right)_{+}^{3}-\left(\frac{\left(T-u_{2}\right)_{+}^{3}\left(u_{3}-u_{1}\right)}{\left(u_{3}-u_{2}\right)}\right)+\left(\frac{\left(T-u_{3}\right)_{+}^{3}\left(u_{2}-u_{1}\right)}{\left(u_{3}-u_{2}\right)}\right)\right\}
$$

Modelling time-varying effects in Cox regression

Extended Cox model with time-varying effects

$$
h(T \mid X, Z)=h_{0}(T) e^{\beta_{X}(T) X+\beta_{Z} Z}
$$

- Restricted cubic spline

$$
\beta_{X}(T)=\beta_{X 0}+\beta_{X 1} T+\beta_{X 2}\left\{\left(T-u_{1}\right)_{+}^{3}-\left(\frac{\left(T-u_{2}\right)_{+}^{3}\left(u_{3}-u_{1}\right)}{\left(u_{3}-u_{2}\right)}\right)+\left(\frac{\left(T-u_{3}\right)_{+}^{3}\left(u_{2}-u_{1}\right)}{\left(u_{3}-u_{2}\right)}\right)\right\}
$$

How do we handle missing data in this situations?

Extended Cox model with time-varying effects

$$
h(T \mid X, Z)=h_{0}(T) e^{\beta_{X}(T) X+\beta_{Z} Z}
$$

What is the distribution of $X \mid T, D, Z$?

$$
p(X \mid T, D, Z)
$$

Aims

1. Derive an (approximate) imputation model

- By extending the work of White \& Royston

2. Assess the performance of the imputation model using simulations

Motivation

- Investigation of the long-term efficacy of the BCG vaccine for TB
- Time-varying effect investigated for vaccination status:
- 0-5 yrs
- 5-10 yrs
- 10-15 yrs
- 15+ yrs post-vaccination
- Missing data on vaccination status
- Also missing data on adjustment variables

Outline

1. Handling missing data on explanatory variables in Cox regression
2. Modelling time-varying effects in Cox regression
3. Derive an imputation model which handles time-varying effects
4. Simulation study
5. An application
6. An alternative approach
7. Further work

Derivation of imputation model

Extended Cox model with time-varying effects

$$
\begin{gathered}
h(T \mid X, Z)=h_{0}(T) e^{\beta \chi(T) X+\beta_{Z} Z} \\
p(X \mid T, D, Z)=p(X \mid Z) p(T, D \mid X, Z) / p(T, D \mid Z) \\
\text { We will specify } \\
\propto h(T \mid X, Z)^{D} \times \operatorname{Pr}(\text { survive to time } T \mid X, Z)
\end{gathered}
$$

General result
$\log n(X \mid T, D, Z)=\log p(X \mid Z)+D \beta_{X}(T) X+D \beta_{Z} Z$ $h_{0}(u) e^{\beta_{X}(u) X+\beta_{Z} Z} \mathrm{~d} u+$ const

Derivation of imputation model

Extended Cox model with time-varying effects

$$
\begin{gathered}
h(T \mid X, Z)=h_{0}(T) e^{\beta X(T) X+\beta_{Z} Z} \\
p(X \mid T, D, Z)=p(X \mid Z) p(T, D \mid X, Z) / p(T, D \mid Z)
\end{gathered}
$$

We will specify

$$
\propto h(T \mid X, Z)^{D} \times \operatorname{Pr}(\text { survive to time } T \mid X, Z)
$$

General result

Derivation of imputation model

Extended Cox model with time-varying effects

$$
\begin{gathered}
h(T \mid X, Z)=h_{0}(T) e^{\beta_{X}(T) X+\beta_{Z} Z} \\
p(X \mid T, D, Z)=p(X \mid Z) p(T, D \mid X, Z) / p(T, D \mid Z) \\
\text { We will specify }
\end{gathered}
$$

$$
\propto h(T \mid X, Z)^{D} \times \operatorname{Pr}(\text { survive to time } T \mid X, Z)
$$

General result
$\log n(X \mid T, D, Z)=\log p(X \mid Z)+D \beta_{X}(T) X+D \beta_{Z} Z$

Derivation of imputation model

Extended Cox model with time-varying effects

$$
\begin{gathered}
h(T \mid X, Z)=h_{0}(T) e^{\beta_{X}(T) X+\beta_{Z} Z} \\
p(X \mid T, D, Z)=p(X \mid Z) p(T, D \mid X, Z) / p(T, D \mid Z) \\
\text { We will specify }
\end{gathered}
$$

$$
\propto h(T \mid X, Z)^{D} \times \operatorname{Pr}(\text { survive to time } T \mid X, Z)
$$

Derivation of imputation model

Extended Cox model with time-varying effects

$$
\begin{gathered}
h(T \mid X, Z)=h_{0}(T) e^{\beta_{X}(T) X+\beta_{Z} Z} \\
p(X \mid T, D, Z)=p(X \mid Z) p(T, D \mid X, Z) / p(T, D \mid Z) \\
\text { We will specify }
\end{gathered}
$$

$$
\propto h(T \mid X, Z)^{D} \times \operatorname{Pr}(\text { survive to time } T \mid X, Z)
$$

General result

$$
\begin{aligned}
\log p(X \mid T, D, Z) & =\log p(X \mid Z)+D \beta_{X}(T) X+D \beta_{Z} Z \\
& -\int_{0}^{T} h_{0}(u) e^{\beta_{X}(u) X+\beta_{Z} Z} \mathrm{~d} u+\text { const }
\end{aligned}
$$

Derivation of imputation model

General result

$$
\begin{aligned}
\log p(X \mid T, D, Z) & =\log p(X \mid Z)+D \beta_{X}(T) X+D \beta_{Z} Z \\
& -\int_{0}^{T} h_{0}(u) e^{\beta_{X}(u) X+\beta_{Z} Z} \mathrm{~d} u+\text { const }
\end{aligned}
$$

How do we apply this when...?

1. X is binary

$$
\text { logit } \operatorname{Pr}(X=1 \mid Z)=\zeta_{0}+\zeta_{1} Z
$$

2. X is Normally distributed given Z

$$
X \mid Z \sim N\left(\zeta_{0}+\zeta_{1} Z, \sigma^{2}\right)
$$

Binary X

General result

$$
\begin{aligned}
\log p(X \mid T, D, Z) & =\log p(X \mid Z)+D \beta_{X}(T) X+D \beta_{Z} Z \\
& -\int_{0}^{T} h_{0}(u) e^{\beta_{X}(u) X+\beta_{Z} Z} \mathrm{~d} u+\text { const }
\end{aligned}
$$

$$
\text { logit } p(X=1 \mid Z)=\zeta_{0}+\zeta_{1} Z
$$

Binary X

General result

$$
\begin{aligned}
\log p(X \mid T, D, Z) & =\log p(X \mid Z)+D \beta_{X}(T) X+D \beta_{Z} Z \\
& -\int_{0}^{T} h_{0}(u) e^{\beta_{X}(u) X+\beta_{Z} z} \mathrm{~d} u+\text { const }
\end{aligned}
$$

$$
\operatorname{logit} p(X=1 \mid Z)=\zeta_{0}+\zeta_{1} Z
$$

Binary X

General result

$$
\begin{aligned}
& \log p(X \mid T, D, Z)=\log p(X \mid Z)+D \beta_{X}(T) X+D \beta_{Z} Z \\
&-\int_{0}^{T} h_{0}(u) e^{\beta_{X}(u) X+\beta_{Z} Z} \mathrm{~d} u+\mathrm{const} \\
& \text { logit } p(X=1 \mid Z)=\zeta_{0}+\zeta_{1} Z \\
& e^{\beta_{X}(u)} \approx e^{\beta_{X}(\bar{u})}+(u-\bar{u}) \beta_{X}^{\prime}(\bar{u}) e^{\beta_{X}(\bar{u})}
\end{aligned}
$$

Binary X

General result

$$
\begin{aligned}
\log p(X \mid T, D, Z) & =\log p(X \mid Z)+D \beta_{X}(T) X+D \beta_{Z} Z \\
& -\int_{0}^{T} h_{0}(u) e^{\beta_{X}(u) X+\beta_{Z} Z} \mathrm{~d} u+\text { const }
\end{aligned}
$$

$$
\text { logit } p(X=1 \mid Z)=\zeta_{0}+\zeta_{1} Z
$$

$$
e^{\beta_{X}(u)} \approx e^{\beta_{X}(\bar{u})}+(u-\bar{u}) \beta_{X}^{\prime}(\bar{u}) e^{\beta_{X}(\bar{u})}
$$

Imputation model: Z categorical

$$
\begin{array}{r}
\quad \text { logit } p(X=1 \mid T, D, Z) \approx \alpha_{0}+\alpha_{1} Z+\alpha_{2} D \beta_{X}(T) \\
+\alpha_{3} H_{0}(T)+\alpha_{5} Z H_{0}(T)+\alpha_{4} H_{0}^{(1)}(T)+\alpha_{6} Z H_{0}^{(1)}(T)
\end{array}
$$

Binary X

General result

$$
\begin{aligned}
\log p(X \mid T, D, Z) & =\log p(X \mid Z)+D \beta_{X}(T) X+D \beta_{Z} Z \\
& -\int_{0}^{T} h_{0}(u) e^{\beta_{X}(u) X+\beta_{Z} z^{2} u+\text { const }}
\end{aligned}
$$

$$
\operatorname{logit} p(X=1 \mid Z)=\zeta_{0}+\zeta_{1} Z
$$

$$
e^{\beta_{x}(u)} \approx e^{\beta_{x}(\bar{u})}+(u-\bar{u}) \beta_{x}^{\prime}(\bar{u}) e^{\beta_{x}(\bar{u})}
$$

Imputation model: Z categorical

$$
\begin{array}{r}
\quad \text { logit } p(X=1 \mid T, D, Z) \approx \alpha_{0}+\alpha_{1} Z+\alpha_{2} D \beta_{X}(T) \\
+\alpha_{3} H_{0}(T)+\alpha_{5} Z H_{0}(T)+\alpha_{4} H_{0}^{(1)}(T)+\alpha_{6} Z H_{0}^{(1)}(T)
\end{array}
$$

$$
H_{0}(T)=\int_{0}^{T} h_{0}(u) d u
$$

$$
H_{0}^{(1)}(T)=\int_{0}^{T} u h_{0}(u) d u
$$

Binary X

General result

$$
\begin{aligned}
\log p(X \mid T, D, Z) & =\log p(X \mid Z)+D \beta_{X}(T) X+D \beta_{Z} Z \\
& -\int_{0}^{T} h_{0}(u) e^{\beta_{X}(u) X+\beta_{Z} z} \mathrm{~d} u+\text { const }
\end{aligned}
$$

logit $p(X=1 \mid Z)=\zeta_{0}+\zeta_{1} Z$

$$
e^{\beta_{X}(u)} \approx e^{\beta_{X}(\bar{u})}+(u-\bar{u}) \beta_{X}^{\prime}(\bar{u}) e^{\beta_{X}(\bar{u})}
$$

logit $p(X=1 \mid T, D, Z) \approx \alpha_{0}+\alpha_{1} Z+\alpha_{2} D \beta_{X}(T)+$

Binary X

General result

$$
\begin{aligned}
\log p(X \mid T, D, Z) & =\log p(X \mid Z)+D \beta_{X}(T) X+D \beta_{Z} Z \\
& -\int_{0}^{T} h_{0}(u) e^{\beta_{X}(u) X+\beta_{Z} z} \mathrm{~d} u+\text { const } \\
\text { logit } p(X=1 \mid Z) & =\zeta_{0}+\zeta_{1} Z \quad e^{\beta_{Z} Z} \approx e^{\beta_{Z} \bar{Z}}+(Z-\bar{Z}) \beta_{Z} e^{\beta_{Z} \bar{Z}} \\
& e^{\beta_{X}(u)} \approx e^{\beta_{X}(\bar{u})}+(u-\bar{u}) \beta_{X}^{\prime}(\bar{u}) e^{\beta_{X}(\bar{u})}
\end{aligned}
$$

logit $p(X=1 \mid T, D, Z) \approx \alpha_{0}+\alpha_{1} Z+\alpha_{2} D \beta_{X}(T)+$

Binary X

General result

$$
\begin{aligned}
\log p(X \mid T, D, Z) & =\log p(X \mid Z)+D \beta_{X}(T) X+D \beta_{Z} Z \\
& -\int_{0}^{T} h_{0}(u) e^{\beta_{X}(u) X+\beta_{Z} Z} \mathrm{~d} u+\text { const } \\
\text { logit } p(X=1 \mid Z) & =\zeta_{0}+\zeta_{1} Z \quad e^{\beta_{Z} Z} \approx e^{\beta_{z} \bar{Z}}+(Z-\bar{Z}) \beta_{Z} e^{\beta_{Z} \bar{Z}} \\
& e^{\beta_{X}(u)} \approx e^{\beta_{X}(\bar{u})}+(u-\bar{u}) \beta_{X}^{\prime}(\bar{u}) e^{\beta_{X}(\bar{u})}
\end{aligned}
$$

Imputation model: Z continuous

$$
\begin{aligned}
& \text { logit } p(X=1 \mid T, D, Z) \approx \alpha_{0}+\alpha_{1} Z+\alpha_{2} D \beta_{X}(T)+ \\
& \alpha_{3} H_{0}(T)+\alpha_{5} Z H_{0}(T)+\alpha_{4} H_{0}^{(1)}(T)+\alpha_{6} Z H_{0}^{(1)}(T)
\end{aligned}
$$

Normally distributed X

General result

$$
\begin{aligned}
\log p(X \mid T, D, Z) & =\log p(X \mid Z)+D \beta_{X}(T) X+D \beta_{Z} Z \\
& -\int_{0}^{T} h_{0}(u) e^{\beta_{X}(u) X+\beta_{Z} Z} \mathrm{~d} u+\text { const }
\end{aligned}
$$

$$
X \mid Z \sim N\left(\zeta_{0}+\zeta_{1} Z, \sigma^{2}\right)
$$

linear or quadratic approximation for $e^{\beta_{X}(u) X+\beta_{Z} Z}$

Normally distributed X

General result

$$
\left.\begin{array}{rl}
\log p(X \mid T, D, Z) & =\log p(X \mid Z)+D \beta_{X}(T) X+D \beta_{Z} Z \\
& -\int_{0}^{T} h_{0}(u) e^{\beta_{X}(u) X+\beta_{Z} Z} \mathrm{~d} u+\text { const }
\end{array}\right\}
$$

linear or quadratic approximation for $e^{\beta_{X}(u) X+\beta_{Z} Z}$

$$
X=\alpha_{0}+\alpha_{1} Z+\alpha_{2} D \beta_{X}(T)+\alpha_{3} H_{0}(T)
$$

Normally distributed X

General result

$$
\begin{aligned}
& \log p(X \mid T, D, Z)=\log p(X \mid Z)+D \beta_{X}(T) X+D \beta_{Z} Z \\
& \quad \int_{0}^{T} h_{0}(u) e^{\beta_{X}(u) X+\beta_{Z} Z} \mathrm{~d} u+\text { const } \\
& X \mid Z \sim N\left(\zeta_{0}+\zeta_{1} Z, \sigma^{2}\right)
\end{aligned}
$$

linear or quadratic approximation for $e^{\beta_{X}(\omega) X+\beta_{Z} z}$

Imputation model: a linear regression

$$
\begin{array}{r}
X=\alpha_{0}+\alpha_{1} Z+\alpha_{2} D \beta_{X}(T)+\alpha_{3} H_{0}(T) \\
+\alpha_{5} Z H_{0}(T)+\alpha_{4} H_{0}^{(1)}(T)+\alpha_{6} Z H_{0}^{(1)}(T)+\varepsilon
\end{array}
$$

Normally distributed X

General result

$$
\begin{aligned}
& \log p(X \mid T, D, Z)=\log p(X \mid Z)+D \beta_{X}(T) X+D \beta_{Z} Z \\
& \quad \int_{0}^{T} h_{0}(u) e^{\beta_{X}(u) X+\beta_{Z} z^{\mathrm{d}} \mathrm{~d} u+\text { const }} \\
& X \mid Z \sim N\left(\zeta_{0}+\zeta_{1} Z, \sigma^{2}\right)
\end{aligned}
$$

linear or quadratic approximation for $e^{\beta_{X}(\omega) X+\beta_{z} z}$

Imputation model: a linear regression

$$
\begin{array}{r}
X=\alpha_{0}+\alpha_{1} Z+\alpha_{2} D \beta_{X}(T)+\alpha_{3} H_{0}(T) \\
+\alpha_{5} Z H_{0}(T)+\alpha_{4} H_{0}^{(1)}(T)+\alpha_{6} Z H_{0}^{(1)}(T)+\varepsilon
\end{array}
$$

- Approximation assumes that $\beta_{X}(u), \beta_{Z}$ or $H_{0}(T)$ is small

Summary

Imputation model

$$
\begin{array}{r}
\text { logit } p(X=1 \mid T, D, Z) \approx \alpha_{0}+\alpha_{1} Z+\alpha_{2} D \beta_{X}(T)+\alpha_{3} H_{0}(T) \\
+\alpha_{5} Z H_{0}(T)+\alpha_{4} H_{0}^{(1)}(T)+\alpha_{6} Z H_{0}^{(1)}(T)
\end{array}
$$

- Breslow's estimate

$$
\widehat{H}_{0}(T)=\sum_{t \leq T} \frac{1}{\sum_{R(t)} e^{\hat{\beta}_{X}(t) X+\hat{\beta}_{Z} Z}}
$$

- The Nelson-Aalen estimate

$$
\widehat{H}(T)=\sum_{t \leq T} \frac{\text { number of events at } t}{\text { number at risk at } t}
$$

- A Nelson-Aalen-type estimate

$$
\widehat{H}^{(1)}(T)=\sum_{t \leqslant T} \frac{t \times \text { number of events at } t}{\text { number at risk at } t}
$$

Summary

Imputation model

$$
\begin{array}{r}
\text { logit } p(X=1 \mid T, D, Z) \approx \alpha_{0}+\alpha_{1} Z+\alpha_{2} D \beta_{X}(T)+\alpha_{3} H_{0}(T) \\
+\alpha_{5} Z H_{0}(T)+\alpha_{4} H_{0}^{(1)}(T)+\alpha_{6} Z H_{0}^{(1)}(T)
\end{array}
$$

- Breslow's estimate

$$
\widehat{H}_{0}(T)=\sum_{t \leq T} \frac{1}{\sum_{R(t)} e^{\hat{\beta}_{X}(t) X+\hat{\beta}_{Z} Z}}
$$

- The Nelson-Aalen estimate

- A Nelson-Aalen-type estimate

Summary

Imputation model

$$
\begin{array}{r}
\text { logit } p(X=1 \mid T, D, Z) \approx \alpha_{0}+\alpha_{1} Z+\alpha_{2} D \beta_{X}(T)+\alpha_{3} H_{0}(T) \\
+\alpha_{5} Z H_{0}(T)+\alpha_{4} H_{0}^{(1)}(T)+\alpha_{6} Z H_{0}^{(1)}(T)
\end{array}
$$

- Breslow's estimate

$$
\widehat{H}_{0}(T)=\sum_{t \leq T} \frac{1}{\sum_{R(t)} e^{\hat{\beta}_{X}(t) X+\hat{\beta}_{Z} Z}}
$$

- The Nelson-Aalen estimate

$$
\widehat{H}(T)=\sum_{t \leq T} \frac{\text { number of events at } t}{\text { number at risk at } t}
$$

- A Nelson-Aalen-type estimate

Summary

Imputation model

$$
\begin{array}{r}
\text { logit } p(X=1 \mid T, D, Z) \approx \alpha_{0}+\alpha_{1} Z+\alpha_{2} D \beta_{X}(T)+\alpha_{3} H_{0}(T) \\
+\alpha_{5} Z H_{0}(T)+\alpha_{4} H_{0}^{(1)}(T)+\alpha_{6} Z H_{0}^{(1)}(T)
\end{array}
$$

- Breslow's estimate

$$
\widehat{H}_{0}(T)=\sum_{t \leq T} \frac{1}{\sum_{R(t)} e^{\hat{\beta}_{X}(t) X+\hat{\beta}_{Z} Z}}
$$

- The Nelson-Aalen estimate

$$
\widehat{H}(T)=\sum_{t \leq T} \frac{\text { number of events at } t}{\text { number at risk at } t}
$$

- A Nelson-Aalen-type estimate

$$
\widehat{H}^{(1)}(T)=\sum_{t \leq T} \frac{t \times \text { number of events at } t}{\text { number at risk at } t}
$$

Summary

Imputation model

$$
\begin{array}{r}
\text { logit } p(X=1 \mid T, D, Z) \approx \alpha_{0}+\alpha_{1} Z+\alpha_{2} D \beta_{X}(T)+\alpha_{3} \widehat{H}(T) \\
+\alpha_{5} Z \widehat{H}(T)+\alpha_{4} \widehat{H}^{(1)}(T)+\alpha_{6} Z \widehat{H}^{(1)}(T)
\end{array}
$$

- Breslow's estimate

$$
\widehat{H}_{0}(T)=\sum_{t \leq T} \frac{1}{\sum_{R(t)} e^{\hat{\beta}_{X}(t) X+\hat{\beta}_{Z} Z}}
$$

- The Nelson-Aalen estimate

$$
\widehat{H}(T)=\sum_{t \leq T} \frac{\text { number of events at } t}{\text { number at risk at } t}
$$

- A Nelson-Aalen-type estimate

$$
\widehat{H}^{(1)}(T)=\sum_{t \leq T} \frac{t \times \text { number of events at } t}{\text { number at risk at } t}
$$

Summary

Imputation model

$$
\begin{array}{r}
\text { logit } p(X=1 \mid T, D, Z) \approx \alpha_{0}+\alpha_{1} Z+\alpha_{2} D \beta_{X}(T)+\alpha_{3} \widehat{H}(T) \\
+\alpha_{5} Z \widehat{H}(T)+\alpha_{4} \widehat{H}^{(1)}(T)+\alpha_{6} Z \widehat{H}^{(1)}(T)
\end{array}
$$

mice in R, mi impute in Stata
In simulations we investigate..

- What happens if we ignore the time-varying effect in the imputation (White \& Royston method)?
- When are the $\widehat{H}^{(1)}$ terms needed?
- When are the interactions terms needed?
- Does the approximation required for the linear regression situation perform well?

Summary

Imputation model

$$
\text { logit } \begin{array}{r}
p(X=1 \mid T, D, Z) \approx \alpha_{0}+\alpha_{1} Z+\alpha_{2} D \beta_{X}(T)+\alpha_{3} \widehat{H}(T) \\
+\alpha_{5} Z \widehat{H}(T)+\alpha_{4} \widehat{H}^{(1)}(T)+\alpha_{6} Z \widehat{H}^{(1)}(T)
\end{array}
$$

$$
\text { mice in } R, \text { mi impute in Stata }
$$

In simulations we investigate...

- What happens if we ignore the time-varying effect in the imputation (White \& Royston method)?
- When are the $\widehat{H}^{(1)}$ terms needed?
- When are the interactions terms needed?
- Does the approximation required for the linear regression situation perform well?

Specific example: log time interaction analysis

$$
h(T \mid X, Z)=h_{0}(T) e^{\beta_{X} X+\beta_{\chi} T \log (T) X+\beta_{Z} Z}
$$

Imputation model

$$
\text { logit } p(X=1 \mid T, D, Z) \approx \alpha_{0}+\alpha_{1} Z+\alpha_{21} D+\alpha_{22} D \log (T)+\alpha_{3} \widehat{H}(T)
$$

$$
+\alpha_{4} \widehat{H}^{(1)}(T)+\alpha_{5} Z \widehat{H}(T)+\alpha_{6} Z \widehat{H}^{(1)}(T)
$$

Extension to missingness in several variables

Extended Cox model with time-varying effects

$$
h(T \mid X, Z)=h_{0}(T) e^{\beta_{X}(T) X+\beta_{Z} Z}
$$

- Often we will have missing data in Z as well as X
- This can be handled using multiple imputation by chained equations (MICE), aka fully conditional specification (FCS)
- We specify models for
- $X \mid Z, T, D$
- $Z \mid X, T, D$

Outline

1. Handling missing data on explanatory variables in Cox regression
2. Modelling time-varying effects in Cox regression
3. Derive an imputation model which handles time-varying effects
4. Simulation study
5. An application
6. An alternative approach
7. Further work

Simulation study

- Cohort of 5000 people followed for 10 years
- Binary or normally distributed exposure X
- Normally distributed covariate $Z: \operatorname{corr}(X, Z)=0.5$

$$
h(T \mid X, Z)=\lambda \exp \left\{\beta_{X} X+\beta_{X T} X(\log T-\log 5)+\beta_{Z} Z\right\}
$$

- 10% have the event
- Missing data in 20% of X and 20% of Z (MCAR)

Simulation study

- Cohort of 5000 people followed for 10 years
- Binary or normally distributed exposure X
- Normally distributed covariate $Z: \operatorname{corr}(X, Z)=0.5$

Hazard model

$$
h(T \mid X, Z)=\lambda \exp \left\{\beta_{X} X+\beta_{X T} X(\log T-\log 5)+\beta_{Z} Z\right\}
$$

Simulation study

- Cohort of 5000 people followed for 10 years
- Binary or normally distributed exposure X
- Normally distributed covariate $Z: \operatorname{corr}(X, Z)=0.5$

Hazard model

$$
h(T \mid X, Z)=\lambda \exp \left\{\beta_{X} X+\beta_{X T} X(\log T-\log 5)+\beta_{Z} Z\right\}
$$

- 10% have the event
- Missing data in 20\% of X and 20% of Z (MCAR)

Simulation study

Modelling the time-varying effect

1. Log-time analysis: $\beta_{X}(T)=\beta_{X}+\beta_{X T}\{\log T-\log 5\}$
2. Step function analysis: using 4 time periods

Complete-data analysis
2. Complete-case analysis
3. MI non-time-varying approach: White \& Royston method
4. MI time-varying approach

$$
\begin{aligned}
X= & \alpha_{0}+\alpha_{1} Z+\alpha_{21} D+\alpha_{22} D \log (T)+\alpha_{3} \widehat{H}(T) \\
& +\alpha_{4} \widehat{H}^{(1)}(T)+\alpha_{5} Z \widehat{H}(T)+\alpha_{6} Z \widehat{H}^{(1)}(T)+\varepsilon
\end{aligned}
$$

Simulation study

Modelling the time-varying effect

1. Log-time analysis: $\beta_{X}(T)=\beta_{X}+\beta_{X T}\{\log T-\log 5\}$
2. Step function analysis: using 4 time periods

Analyses performed

1. Complete-data analysis
2. Complete-case analysis
3. MI non-time-varying approach: White \& Royston method
4. MI time-varying approach

Simulation study

Modelling the time-varying effect

1. Log-time analysis: $\beta_{X}(T)=\beta_{X}+\beta_{X T}\{\log T-\log 5\}$
2. Step function analysis: using 4 time periods

Analyses performed

1. Complete-data analysis
2. Complete-case analysis
3. MI non-time-varying approach: White \& Royston method
4. MI time-varying approach

Imputation model

$$
X=\alpha_{0}+\alpha_{1} Z+\alpha_{21} D+\alpha_{22} D \log (T)+\alpha_{3} \widehat{H}(T)
$$

Simulation study

Modelling the time-varying effect

1. Log-time analysis: $\beta_{X}(T)=\beta_{X}+\beta_{X T}\{\log T-\log 5\}$
2. Step function analysis: using 4 time periods

Analyses performed

1. Complete-data analysis
2. Complete-case analysis
3. MI non-time-varying approach: White \& Royston method
4. MI time-varying approach

Imputation model

$$
\begin{aligned}
X= & \alpha_{0}+\alpha_{1} Z+\alpha_{21} D+\alpha_{22} D \log (T)+\alpha_{3} \widehat{H}(T) \\
& +\alpha_{4} \widehat{H}^{(1)}(T)
\end{aligned}
$$

Simulation study

Modelling the time-varying effect

1. Log-time analysis: $\beta_{X}(T)=\beta_{X}+\beta_{X T}\{\log T-\log 5\}$
2. Step function analysis: using 4 time periods

Analyses performed

1. Complete-data analysis
2. Complete-case analysis
3. MI non-time-varying approach: White \& Royston method
4. MI time-varying approach

Imputation model

$$
\begin{aligned}
X= & \alpha_{0}+\alpha_{1} Z+\alpha_{21} D+\alpha_{22} D \log (T)+\alpha_{3} \widehat{H}(T) \\
& +\alpha_{4} \widehat{H}^{(1)}(T)+\alpha_{5} Z \widehat{H}(T)+\alpha_{6} Z \widehat{H}^{(1)}(T)+\varepsilon
\end{aligned}
$$

Results: Log-time analysis, Normal X

$\beta_{X}=0.5, \beta_{X T}=-0.5$				
$\beta_{Z}=0.5$				
Est				
bias				
eff				
β_{X}	0.501	0.001	100	
$\beta_{X T}$	-0.502	-0.002	100	
β_{Z}	0.498	-0.002	100	
Complete case				
β_{X}	0.493	-0.007	63	
$\beta_{X T}$	-0.505	-0.005	67	
β_{Z}	0.502	0.002	63	
Time-varying MI				
β_{X}	0.497	-0.003	74	
$\beta_{X T}$	-0.506	-0.006	87	
β_{Z}	0.500	-0.000	76	
Non-time-varying MI				
β_{X}	0.492	-0.008	75	
$\beta_{X T}$	-0.425	0.075	123	
β_{Z}	0.500	0.000	77	

Results: Log-time analysis, Normal X

$\beta_{X}=0.5, \beta_{X T}=-0.5$				
$\beta_{Z}=0.5$				
Est				
bias				
β_{X}	0.501	eff		
$\beta_{X T}$	-0.502	-0.001	100	
β_{Z}	0.498	-0.002	100	
Complete case				
β_{X}	0.493	-0.007	63	
$\beta_{X T}$	-0.505	-0.005	67	
β_{Z}	0.502	0.002	63	
Time-varying MI				
β_{X}	0.497	-0.003	74	
$\beta_{X T}$	-0.506	-0.006	87	
β_{Z}	0.500	-0.000	76	
Non-time-varying MI				
β_{X}	0.492	-0.008	75	
$\beta_{X T}$	-0.425	0.075	123	
β_{Z}	0.500	0.000	77	

Results: Log-time analysis, Normal X

$\beta_{X}=0.5, \beta_{X T}=-0.5$				
$\beta_{Z}=0.5$				
Est				
Complete data	eff			
β_{X}	0.501	0.001	100	
$\beta_{X T}$	-0.502	-0.002	100	
β_{Z}	0.498	-0.002	100	
Complete case				
β_{X}	0.493	-0.007	63	
$\beta_{X T}$	-0.505	-0.005	67	
β_{Z}	0.502	0.002	63	
Time-varying MI				
β_{X}	0.497	-0.003	74	
$\beta_{X T}$	-0.506	-0.006	87	
β_{Z}	0.500	-0.000	76	
Non-time-varying MI				
β_{X}	0.492	-0.008	75	
$\beta_{X T}$	-0.425	0.075	123	
β_{Z}	0.500	0.000	77	

Results: Log-time analysis, Normal X

$\beta_{X}=0.5, \beta_{X T}=-0.5$				
$\beta_{Z}=0.5$				
Est				
Complete data	eff			
β_{X}	0.501	0.001	100	
$\beta_{X T}$	-0.502	-0.002	100	
β_{Z}	0.498	-0.002	100	
Complete case				
β_{X}	0.493	-0.007	63	
$\beta_{X T}$	-0.505	-0.005	67	
β_{Z}	0.502	0.002	63	
Time-varying MI				
β_{X}	0.497	-0.003	74	
$\beta_{X T}$	-0.506	-0.006	87	
β_{Z}	0.500	-0.000	76	
Non-time-varying MI				
β_{X}	0.492	-0.008	75	
$\beta_{X T}$	-0.425	0.075	123	
β_{Z}	0.500	0.000	77	

Results: Log-time analysis, Normal X

$\beta_{X}=0.5, \beta_{X T}=-0.5$					
$\beta_{Z}=0.5$					
Est					
bime-varying MI					eff
β_{X}	0.497	-0.003	74		
$\beta_{X T}$	-0.506	-0.006	87		
β_{Z}	0.500	-0.000	76		
Time-varying MI: + $\widehat{H}^{(1)}(T) "$					
β_{X}	0.497	-0.003	75		
$\beta_{X T}$	-0.508	-0.008	86		
β_{Z}	0.499	-0.001	75		
Time-varying MI: + interactions					
β_{X}	0.497	-0.003	74		
$\beta_{X T}$	-0.507	-0.007	86		
β_{Z}	0.500	0.000	75		

Results: Log-time analysis, Normal X

	$\begin{gathered} \beta_{X}=0.5, \beta_{X T}=-0.5 \\ \beta_{Z}=0.5 \end{gathered}$			$\begin{gathered} \beta_{X}=1.5, \beta_{X T}=-0.5 \\ \beta_{Z}=0.5 \end{gathered}$		
	Est	bias	eff	Est	bias	eff
Time-varying MI						
β_{X}	0.497	-0.003	74	1.485	-0.0	75
$\beta_{X T}$	-0.506	-0.006	87	-0.506	-0.006	89
β_{Z}	0.500	-0.000	76	0.498	-0.002	78
Time-varying MI: + interactions						
β_{X}	0.497	-0.003	74	1.488	-0.012	75
$\beta_{X T}$	-0.507	-0.007	86	-0.501	-0.001	88
β_{Z}	0.500	0.000	75	0.500	0.000	78

Results: Log-time analysis, Normal X

	10\% have event			30\% have event		
	Est	bias	eff	Est	bias	eff
Time-varying MI						
β_{X}	0.497	-0.003	74	0.494	-0.006	78
$\beta_{X T}$	-0.506	-0.006	87	-0.500	-0.000	87
β_{Z}	0.500	-0.000	76	0.502	0.002	75
Time-varying MI: + interactions						
β_{X}	0.497	-0.003	74	0.496	-0.004	79
$\beta_{X T}$	-0.507	-0.007	86	-0.498	0.002	87
β_{Z}	0.500	0.000	75	0.503	0.003	76

Results: step function analysis

Results: step function analysis

Results: step function analysis

Results: step function analysis

Parameter	Est	\% Bias	cov	eff
Complete case				
$\beta_{X 1}$	1.116	-0.005	62	
$\beta_{X 2}$	0.650	-0.005	64	
$\beta_{X 3}$	0.376	-0.009	65	
$\beta_{X 4}$	0.214	-0.010	61	
β_{Z}	0.502	0.002	63	
MI: time-varying method				
$\beta_{X 1}$	1.121	-0.001	85	
$\beta_{X 2}$	0.648	-0.007	80	
$\beta_{X 3}$	0.379	-0.006	79	
$\beta_{X 4}$	0.218	-0.006	78	
β_{Z}	0.500	-0.000	76	
MI: non-time-varying method				
$\beta_{X 1}$	1.019	-0.103	110	
$\beta_{X 2}$	0.619	-0.036	102	
$\beta_{X 3}$	0.394	0.009	98	
$\beta_{X 4}$	0.256	0.033	95	
β_{Z}	0.500	0.000	76	

Testing the proportional hazards assumption

Hazard model

Data generated using the hazard model

$$
h(T \mid X, Z)=h_{0}(T) e^{\beta_{X} X+\beta_{X T}(\log T-\log 5) X+\beta_{Z} Z}
$$

with $\beta_{X T}=0$
Percentage of simulations in which the null hypothesis $\beta_{X T}=0$ was rejected:

Complete data	5.0%
Complete case	5.3%
$\mathrm{MI}:$ time-varying method	5.3%
$\mathrm{MI}:$ non-timevarying method	2.2%

Outline

1. Handling missing data on explanatory variables in Cox regression
2. Modelling time-varying effects in Cox regression
3. Derive an imputation model which handles time-varying effects
4. Simulation study
5. An application
6. An alternative approach
7. Further work

Illustration: Rotterdam breast Cancer Study

- 2982 individuals with primary breast cancer from the Rotterdam tumour bank
- Individuals followed-up for death/disease recurrence (51\%)
- Sauerbrei et al (2007), Royston \& Sauerbrei (2008): time-varying effects of two variables
- tumour size: $\log (T)$
- number of progesterone receptors $(\log (p g r+1)): \log (T)$
- I generated missing data for 20% of individuals in both variables

Illustration: Rotterdam breast Cancer Study

- 2982 individuals with primary breast cancer from the Rotterdam tumour bank
- Individuals followed-up for death/disease recurrence (51\%)
- Sauerbrei et al (2007), Royston \& Sauerbrei (2008): time-varying effects of two variables
- tumour size: $\log (T)$
- number of progesterone receptors $(\log (p g r+1)): \log (T)$

Illustration: Rotterdam breast Cancer Study

- 2982 individuals with primary breast cancer from the Rotterdam tumour bank
- Individuals followed-up for death/disease recurrence (51\%)
- Sauerbrei et al (2007), Royston \& Sauerbrei (2008): time-varying effects of two variables
- tumour size: $\log (T)$
- number of progesterone receptors $(\log (p g r+1)): \log (T)$
- I generated missing data for 20% of individuals in both variables

Illustration: Rotterdam Breast Cancer Study

Another example: Arrest after release from prison

- 432 inmates released from state prison followed up for 1 year (Allison et al (2010))
- Factors associated with re-arrest:
- Age: time-varying effect (linear with time since release)
- Financial aid: step function, with a step 20-30 weeks after release
- Prior arrests: no time-varying effect
- 20% missingness introduced in age and financial aid

Another example: Arrest after release from prison

Outline

1. Handling missing data on explanatory variables in Cox regression
2. Modelling time-varying effects in Cox regression
3. Derive an imputation model which handles time-varying effects
4. Simulation study
5. An application
6. An alternative approach
7. Further work

Another approach for imputation under the Cox model

- We have focused on an approximate imputation model for $p(X \mid T, D, Z)$
- This does not extend to allowing non-linear terms (e.g. X^{2}) or interaction terms

Artic	SMMR
Multiple imputation of covariates	
by fully conditional specificatio	50:10.1717
Accommodating the substantive model	©SAGE

Jonathan W Bartlett, ${ }^{1}$ Shaun R Seaman, ${ }^{2}$
lan R White ${ }^{2}$ and James R Carpenter ${ }^{1,3}$ for the Alzheimer's
Disease Neuroimaging Initiative*

Another approach for imputation under the Cox model

- We have focused on an approximate imputation model for $p(X \mid T, D, Z)$
- This does not extend to allowing non-linear terms (e.g. X^{2}) or interaction terms

Artic	SMMR
Multiple imputation of covariates	
by fully conditional specificatio	50:10.1717
Accommodating the substantive model	©SAGE

Jonathan W Bartlett, ${ }^{1}$ Shaun R Seaman, ${ }^{2}$
lan R White ${ }^{2}$ and James R Carpenter ${ }^{1,3}$ for the Alzheimer's
Disease Neuroimaging Initiative*

The Bartlett et al. approach

Aim

- For variable X with missing data and fully-observed variable Z
- To impute missing values of X by drawing from the true distribution $p(X \mid T, D, Z)$
- Draw potential values of X from a proposal distribution $p(X \mid Z)$
- Use a reiection rule to decide whether or not to accent the potential imputed values of X as imputed values from the desired distribution $p(X \mid T, D, Z)$

The Bartlett et al. approach

Aim

- For variable X with missing data and fully-observed variable Z
- To impute missing values of X by drawing from the true distribution $p(X \mid T, D, Z)$

The basic idea...

- Draw potential values of X from a proposal distribution $p(X \mid Z)$
- Use a rejection rule to decide whether or not to accept the potential imputed values of X as imputed values from the desired distribution $p(X \mid T, D, Z)$

The Bartlett et al. approach

Aim

- For variable X with missing data and fully-observed variable Z
- To impute missing values of X by drawing from the true distribution $p(X \mid T, D, Z)$

The basic idea...

- Draw potential values of X from a proposal distribution $p(X \mid Z)$
- Use a rejection rule to decide whether or not to accept the potential imputed values of X as imputed values from the desired distribution $p(X \mid T, D, Z)$

The method does not currently accommodate time-varying effects of exposures

Extending the Bartlett et al. approach

Cox proportional hazards model

$$
h(T \mid X, Z)=h_{0}(T) e^{\beta_{X} X+\beta_{Z} Z}
$$

1. Obtain initial estimates for β_{X}, β_{Z} and their covariance
2. Draw values $\beta_{X}^{(m)}, \beta_{Z}^{(m)}$ from their estimated distribution
3. Fit the proposal distribution $p(X \mid Z)$ and draw parameter values from their estimated joint distribution
4. Draw a value X^{*} from the proposal distribution
5. Draw a value $U \sim \operatorname{Uniform}(0,1)$. Accept the value X^{*} if.

Extending the Bartlett et al. approach

Cox proportional hazards model

$$
h(T \mid X, Z)=h_{0}(T) e^{\beta_{X} X+\beta_{Z} Z}
$$

1. Obtain initial estimates for β_{X}, β_{Z} and their covariance
2. Draw values $\beta_{X}^{(m)}, \beta_{Z}^{(m)}$ from their estimated distribution
3. Fit the proposal distribution $p(X \mid Z)$ and draw parameter values from their estimated joint distribution
4. Draw a value X^{*} from the proposal distr bution
5. Draw a value $U \sim \operatorname{Uniform}(0,1)$. Accept the value X^{*} if

Extending the Bartlett et al. approach

Cox proportional hazards model

$$
h(T \mid X, Z)=h_{0}(T) e^{\beta_{X} X+\beta_{Z} Z}
$$

1. Obtain initial estimates for β_{X}, β_{Z} and their covariance
2. Draw values $\beta_{X}^{(m)}, \beta_{Z}^{(m)}$ from their estimated distribution
3. Fit the proposal distribution $p(X \mid Z)$ and draw parameter values from their estimated joint distribution

Extending the Bartlett et al. approach

Cox proportional hazards model

$$
h(T \mid X, Z)=h_{0}(T) e^{\beta_{X} X+\beta_{Z} Z}
$$

1. Obtain initial estimates for β_{X}, β_{Z} and their covariance
2. Draw values $\beta_{X}^{(m)}, \beta_{Z}^{(m)}$ from their estimated distribution
3. Fit the proposal distribution $p(X \mid Z)$ and draw parameter values from their estimated joint distribution
4. Draw a value X^{*} from the proposal distribution
5. Draw a value $U \sim \operatorname{Uniform}(0,1)$

Extending the Bartlett et al. approach

Cox proportional hazards model

$$
h(T \mid X, Z)=h_{0}(T) e^{\beta_{X} X+\beta_{Z} Z}
$$

1. Obtain initial estimates for β_{X}, β_{Z} and their covariance
2. Draw values $\beta_{X}^{(m)}, \beta_{Z}^{(m)}$ from their estimated distribution
3. Fit the proposal distribution $p(X \mid Z)$ and draw parameter values from their estimated joint distribution
4. Draw a value X^{*} from the proposal distribution
5. Draw a value $U \sim \operatorname{Uniform}(0,1)$. Accept the value X^{*} if...

$$
\begin{cases}U \leq \exp \left\{-H_{0}^{(m)}(T) e^{\left.\beta_{X}^{(m)} X^{*}+\beta_{Z}^{(m)} z\right\}}\right. & \text { if } D=0 \\ U \leq H_{0}^{(m)}(T) \exp \left\{1+\beta_{X}^{(m)} X^{*}+\beta_{Z}^{(m)} Z-H_{0}^{(m)}(T) e^{\beta_{X}^{(m)} X^{*}+\beta_{Z}^{(m)} z}\right\} & \text { if } D=1\end{cases}
$$

Extending the Bartlett et al. approach

Cox proportional hazards model

$$
h(T \mid X, Z)=h_{0}(T) e^{\beta_{X} X+\beta_{Z} Z}
$$

$$
\begin{array}{ll}
U \leq \exp \left\{-H_{0}^{(m)}(T) e^{\left.\beta_{X}^{(m)} X^{*}+\beta_{Z}^{(m)} z\right\}}\right. & \text { if } D=0 \\
U \leq H_{0}^{(m)}(T) \exp \left\{1+\beta_{X}^{(m)} X^{*}+\beta_{Z}^{(m)} Z-H_{0}^{(m)}(T) e^{\left.\beta_{X}^{(m)} X^{*}+\beta_{Z}^{(m)} z\right\}}\right. & \text { if } D=1
\end{array}
$$

Extended Cox model with time-varying effects

$$
h(T \mid X, Z)=h_{0}(T) e^{\beta_{X}(T) X+\beta_{Z} Z}
$$

$$
\begin{aligned}
& U \leq \exp \left\{-\int_{0}^{T} h_{0}(u) e^{\left.\beta_{X}^{(m)} X^{*}+\beta_{Z}^{(m)} Z+\beta_{X T}^{(m)}(u) X^{*} \mathrm{~d} u\right\}}\right. \\
& U \leq h_{0}^{(m)}(T) \exp \left\{1+\beta_{X}^{(m)} X^{*}+\beta_{Z}^{(m)} Z+\beta_{X T}^{(m)}(T) X^{*}-\int_{0}^{T} h_{0}(u) e^{\beta_{X}^{(m)} X^{*}+\beta_{Z}^{(m)} Z+\beta_{X T}^{(m)}(u) X^{*}} \mathrm{~d} u\right\}
\end{aligned}
$$

- The standard approach can be applied in R and Stata using Jonathan Bartlett's package smcfcs

Extending the Bartlett et al. approach

Cox proportional hazards model

$$
h(T \mid X, Z)=h_{0}(T) e^{\beta_{X} X+\beta_{Z} Z}
$$

$$
\begin{array}{ll}
U \leq \exp \left\{-H_{0}^{(m)}(T) e^{\left.\beta_{X}^{(m)} X^{*}+\beta_{Z}^{(m)} z\right\}}\right. & \text { if } D=0 \\
U \leq H_{0}^{(m)}(T) \exp \left\{1+\beta_{X}^{(m)} X^{*}+\beta_{Z}^{(m)} Z-H_{0}^{(m)}(T) e^{\beta_{X}^{(m)} X^{*}+\beta_{Z}^{(m)} z}\right\} & \text { if } D=1
\end{array}
$$

Extended Cox model with time-varying effects

$$
h(T \mid X, Z)=h_{0}(T) e^{\beta_{X}(T) X+\beta_{Z} Z}
$$

$$
\begin{aligned}
& U \leq \exp \left\{-\int_{0}^{T} h_{0}(u) e^{\beta_{X}^{(m)} X^{*}+\beta_{Z}^{(m)} Z+\beta_{X T}^{(m)}(u) X^{*}} \mathrm{~d} u\right\} \\
& U \leq h_{0}^{(m)}(T) \exp \left\{1+\beta_{X}^{(m)} X^{*}+\beta_{Z}^{(m)} Z+\beta_{X T}^{(m)}(T) X^{*}-\int_{0}^{T} h_{0}(u) e^{\beta_{X}^{(m)} X^{*}+\beta_{Z}^{(m)} Z+\beta_{X T}^{(m)}(u) X^{*}} \mathrm{~d} u\right\}
\end{aligned}
$$

- The standard approach can be applied in R and Stata using Jonathan Bartlett's package smcfcs

Extending the Bartlett et al. approach: Some results

Extended Cox model with time-varying effects

$$
h(T \mid X, Z)=h_{0}(T) e^{\beta_{X} X+\beta_{X T} \log (T) X+\beta_{Z} Z}
$$

- I simulated data for binary X and continuous Z
- Missing data on X were generated for 20% of individuals

	β_{X}	$\beta_{X T}$	β_{Z}
Complete data	$0.47(0.32)$	$-0.53(0.18)$	$0.51(0.30)$
Complete case	$0.46(0.36)$	$-0.55(0.22)$	$0.44(0.34)$
MI: non-time-varying	$0.57(0.34)$	$-0.42(0.15)$	$0.51(0.31)$
MI: Approx method	$0.46(0.36)$	$-0.54(0.21)$	$0.51(0.31)$
MI: Extended Bartlett	$0.47(0.31)$	$-0.53(0.18)$	$0.51(0.30)$

Outline

1. Handling missing data on explanatory variables in Cox regression
2. Modelling time-varying effects in Cox regression
3. Derive an imputation model which handles time-varying effects
4. Simulation study
5. An application
6. An alternative approach
7. Further work

Allowing a flexible functional form

- Everything so far requires us to specify the functional form for the time-varying effects $\beta_{X}(T)$
- An alternative is to somehow select a 'best' functional form
- Sauerbrei et al. (2007), Royston \& Sauerbrei (2008): Using fractional polynomials to model time-varying effects

Allowing a flexible functional form

Extended Cox model with time-varying effects

$$
h(T \mid X, Z)=h_{0}(T) e^{\beta_{X}(T) X+\beta_{Z} Z}
$$

Using a fractional polynomial of degree 1

$$
\beta_{X}(T)=\beta_{X 0}+\beta_{X 1} T^{p}
$$

The best power p is selected from set $\{-2,-1,-0.5,0,0.5,1,2,3\}$
Aim

- Incorporate MI within this approach
- By allowing accommodating a flexible functional form for $\beta_{X}(T)$ in the imputation model
- By selecting the best fitting FP using the imputed data sets

Allowing a flexible functional form

Extended Cox model with time-varying effects

$$
h(T \mid X, Z)=h_{0}(T) e^{\beta_{X}(T) X+\beta_{Z} Z}
$$

Using a fractional polynomial of degree 1

$$
\beta_{X}(T)=\beta_{X 0}+\beta_{X 1} T^{p}
$$

The best power p is selected from set $\{-2,-1,-0.5,0,0.5,1,2,3\}$
Aim

- Incorporate MI within this approach
- By allowing accommodating a flexible functional form for $\beta_{X}(T)$ in the imputation model
- By selecting the best fitting FP using the imputed data sets

Allowing a flexible functional form

Statistics
Research Article

Combining fractional polynomial model building with multiple imputation

Tim P. Morris, ${ }^{\text {a,b* }}{ }^{\dagger}$ Ian R. White, ${ }^{\text {c }}$ James R. Carpenter, ${ }^{\text {a,b }}$ Simon J. Stanworth ${ }^{\text {d }}$ and Patrick Royston ${ }^{\text {a }}$

Summary comments

- We should incorporate time-varying effects into the imputation model to get unbiased estimates of time-varying effects
- ... and correct tests for proportional hazards
- The approximate approach can be easily applied in standard software and works well in many circumstances
- The extended Bartlett et al. approach has advantages in some situations
- ...it also allows for nonlinear terms e.g. X^{2}
- We aim to show how these methods can be used in conjunction with model selection and fractional polynomials

Summary comments

- We should incorporate time-varying effects into the imputation model to get unbiased estimates of time-varying effects
- ... and correct tests for proportional hazards
- The approximate approach can be easily applied in standard software and works well in many circumstances
- The extended Bartlett et al. approach has advantages in some situations
- ...it also allows for nonlinear terms e.g. X^{2}
- We aim to show how these methods can be used in conjunction with model selection and fractional polynomials

Summary comments

- We should incorporate time-varying effects into the imputation model to get unbiased estimates of time-varying effects
- ... and correct tests for proportional hazards
- The approximate approach can be easily applied in standard software and works well in many circumstances
- The extended Bartlett et al. approach has advantages in some situations
- ...it also allows for nonlinear terms e.g. X^{2}
- We aim to show how these methods can be used in conjunction with model selection and fractional polynomials

Summary comments

- We should incorporate time-varying effects into the imputation model to get unbiased estimates of time-varying effects
- ... and correct tests for proportional hazards
- The approximate approach can be easily applied in standard software and works well in many circumstances
- The extended Bartlett et al. approach has advantages in some situations
- ...it also allows for nonlinear terms e.g. X^{2}
- We aim to show how these methods can be used in conjunction with model selection and fractional polynomials

Thanks

For comments on this work
Ian White, Mike Kenward, Tim Morris, Jonathan Bartlett

Funding
MRC Methodology Fellowship

