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Multiple imputation in general

I Aim: To fit an analysis model Y ∼ X ,Z

I Missing data in explanatory variables is a very common problem
in epidemiology

I Basic approach: Complete case analysis

Multiple imputation (MI)
For a partially missing exposure X , fully observed covariates Z

1. Draw values of X from X |Z ,Y

2. Obtain several imputed data sets

3. Fit the analysis model in each imputed data set and combine
parameter estimates using Rubin’s Rules
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Multiple imputation in general

Main challenge
What is the distribution of X |Z ,Y ?

Example: Linear regression

Y = β0 + βX X + βZ Z + ε

I If Y |X ,Z ∼ Normal and X |Z ∼ Normal then X |Z ,Y ∼ Normal

I Imputation model: X = α0 + α1Z + α2Y + δ

Steps

1. Obtain estimates α̂0, α̂1, α̂2, σ̂
2
δ

, and their variances/covariances

2. Draw values α̂
(m)
0 , α̂

(m)
1 , α̂

(m)
2 , σ̂

2(m)

δ
from their estimated distn

3. The mth imputation of X is

X (m) = α̂
(m)
0 + α̂

(m)
1 Z + α̂

(m)
2 Y + δ

∗
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Multiple imputation in Cox Regression

Cox proportional hazards model

h(T |X ,Z ) = h0(T )eβX X+βZ Z

I T : Event or censoring time

I D: Event indicator

Distribution of interest for the imputation:

X |Z ,outcome

Event/censoring time T , event indicator D

What is this distribution X |Z ,T ,D??
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Multiple imputation in Cox Regression

Previously suggested imputation models:

X ∼ Z + D + T , X ∼ Z + D + logT

White and Royston imputation model

X ∼ Z + D + H0(T )

help =Cumulative baseline hazard
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Modelling time-varying effects in Cox regression

Standard Cox proportional hazards model

h(T |X ,Z ) = h0(T )eβX X+βZ Z

I Sometimes we want to study how the effect of the exposure
changes over time

Extended Cox model with time-varying effects

h(T |X ,Z ) = h0(T )eβX (T )X+βZ Z

I This also enables a test of the proportional hazards assumption
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Modelling time-varying effects in Cox regression

Extended Cox model with time-varying effects

h(T |X ,Z ) = h0(T )eβX (T )X+βZ Z

I Smooth pre-specified form:

βX (T ) = βX + βXT log(T )

I Step function:

βX (T ) =


βX1 0 < T ≤ u1

βX2 u1 < T ≤ u2

βX3 u2 < T ≤ u3

βX4 T > u3
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Modelling time-varying effects in Cox regression

Extended Cox model with time-varying effects

h(T |X ,Z ) = h0(T )eβX (T )X+βZ Z

I Restricted cubic spline

βX (T ) = βX0 +βX1T +βX2

{
(T −u1)3

+−

(
(T −u2)3

+(u3−u1)

(u3−u2)

)
+

(
(T −u3)3

+(u2−u1)

(u3−u2)

)}
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How do we handle missing data in this situations?

Extended Cox model with time-varying effects

h(T |X ,Z ) = h0(T )eβX (T )X+βZ Z

What is the distribution of X |T ,D,Z?

p(X |T ,D,Z )

Aims
1. Derive an (approximate) imputation model

I By extending the work of White & Royston

2. Assess the performance of the imputation model using
simulations



Motivation

I Investigation of the long-term efficacy of the BCG vaccine for TB
I Time-varying effect investigated for vaccination status:

I 0-5 yrs
I 5-10 yrs
I 10-15 yrs
I 15+ yrs post-vaccination

I Missing data on vaccination status

I Also missing data on adjustment variables
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Derivation of imputation model

Extended Cox model with time-varying effects

h(T |X ,Z ) = h0(T )eβX (T )X+βZ Z

p(X |T ,D,Z ) = p(X |Z )p(T ,D|X ,Z )/p(T ,D|Z )

help =We will specify

∝ h(T |X ,Z )D×Pr(survive to time T |X ,Z )

General result
logp(X |T ,D,Z ) = logp(X |Z ) + DβX (T )X + DβZ Z

−
∫ T

0
h0(u)eβX (u)X+βZ Z du + const
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Derivation of imputation model

General result
logp(X |T ,D,Z ) = logp(X |Z ) + DβX (T )X + DβZ Z

−
∫ T

0
h0(u)eβX (u)X+βZ Z du + const

How do we apply this when...?

1. X is binary
logit Pr(X = 1|Z ) = ζ0 + ζ1Z

2. X is Normally distributed given Z

X |Z ∼ N(ζ0 + ζ1Z ,σ2)



Binary X

General result
logp(X |T ,D,Z ) = logp(X |Z ) + DβX (T )X + DβZ Z

−
∫ T

0
h0(u)eβX (u)X+βZ Z du + const

help =
logit p(X = 1|Z ) = ζ0 + ζ1Z

eβX (u) ≈ eβX (ū)+(u− ū)β ′X (ū)eβX (ū)

Imputation model: Z categorical

logit p(X = 1|T ,D,Z )≈ α0 + α1Z + α2DβX (T )

+α3H0(T ) + α5ZH0(T )+α4H(1)
0 (T ) + α6ZH(1)

0 (T )

help =
H0(T ) =

∫ T
0 h0(u)du H(1)

0 (T ) =
∫ T

0 uh0(u)du
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Summary

Imputation model

logit p(X = 1|T ,D,Z )≈ α0 + α1Z + α2DβX (T ) + α3H0(T )

+α5ZH0(T ) + α4H(1)
0 (T ) + α6ZH(1)

0 (T )

I Breslow’s estimate

Ĥ0(T ) = ∑
t≤T

1

∑R(t) eβ̂X (t)X+β̂Z Z

I The Nelson-Aalen estimate

Ĥ(T ) = ∑
t≤T

number of events at t
number at risk at t

I A Nelson-Aalen-type estimate

Ĥ(1)(T ) = ∑
t≤T

t×number of events at t
number at risk at t
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mice in R, mi impute in Stata

In simulations we investigate...

I What happens if we ignore the time-varying effect in the
imputation (White & Royston method)?

I When are the Ĥ(1) terms needed?

I When are the interactions terms needed?

I Does the approximation required for the linear regression
situation perform well?
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I When are the Ĥ(1) terms needed?

I When are the interactions terms needed?

I Does the approximation required for the linear regression
situation perform well?



Specific example: log time interaction analysis

h(T |X ,Z ) = h0(T )eβX X+βXT log(T )X+βZ Z

Imputation model

logit p(X = 1|T ,D,Z )≈ α0 + α1Z + α21D + α22D log(T ) + α3Ĥ(T )

+α4Ĥ(1)(T ) + α5ZĤ(T ) + α6ZĤ(1)(T )



Extension to missingness in several variables

Extended Cox model with time-varying effects

h(T |X ,Z ) = h0(T )eβX (T )X+βZ Z

I Often we will have missing data in Z as well as X

I This can be handled using multiple imputation by chained
equations (MICE), aka fully conditional specification (FCS)

I We specify models for
I X |Z ,T ,D
I Z |X ,T ,D



Outline

1. Handling missing data on explanatory variables in Cox
regression

2. Modelling time-varying effects in Cox regression

3. Derive an imputation model which handles time-varying effects

4. Simulation study

5. An application

6. An alternative approach

7. Further work



Simulation study

I Cohort of 5000 people followed for 10 years

I Binary or normally distributed exposure X

I Normally distributed covariate Z : corr(X ,Z ) = 0.5

Hazard model

h(T |X ,Z ) = λ exp{βX X + βXT X (logT − log5) + βZ Z}

I 10% have the event

I Missing data in 20% of X and 20% of Z (MCAR)
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Simulation study

Modelling the time-varying effect
1. Log-time analysis: βX (T ) = βX + βXT {logT − log5}

2. Step function analysis: using 4 time periods

Analyses performed
1. Complete-data analysis

2. Complete-case analysis

3. MI non-time-varying approach: White & Royston method

4. MI time-varying approach

Imputation model

X = α0 +α1Z +α21D+α22D log(T )+α3Ĥ(T )

+α4Ĥ(1)(T )+α5ZĤ(T )+α6ZĤ(1)(T )+ ε



Simulation study

Modelling the time-varying effect
1. Log-time analysis: βX (T ) = βX + βXT {logT − log5}

2. Step function analysis: using 4 time periods

Analyses performed
1. Complete-data analysis

2. Complete-case analysis

3. MI non-time-varying approach: White & Royston method

4. MI time-varying approach

Imputation model

X = α0 +α1Z +α21D+α22D log(T )+α3Ĥ(T )
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Results: Log-time analysis, Normal X

βX = 0.5,βXT =−0.5
βZ = 0.5

Est bias eff
Complete data
βX 0.501 0.001 100

βXT -0.502 -0.002 100
βZ 0.498 -0.002 100

Complete case
βX 0.493 -0.007 63

βXT -0.505 -0.005 67
βZ 0.502 0.002 63

Time-varying MI
βX 0.497 -0.003 74

βXT -0.506 -0.006 87
βZ 0.500 -0.000 76

Non-time-varying MI
βX 0.492 -0.008 75

βXT -0.425 0.075 123
βZ 0.500 0.000 77
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Results: Log-time analysis, Normal X

βX = 0.5,βXT =−0.5
βZ = 0.5

Est bias eff
Time-varying MI
βX 0.497 -0.003 74
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Time-varying MI: + Ĥ(1)(T )”
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Results: Log-time analysis, Normal X

βX = 0.5,βXT =−0.5 βX = 1.5,βXT =−0.5
βZ = 0.5 βZ = 0.5

Est bias eff Est bias eff
Time-varying MI
βX 0.497 -0.003 74 1.485 -0.015 75

βXT -0.506 -0.006 87 -0.506 -0.006 89
βZ 0.500 -0.000 76 0.498 -0.002 78

Time-varying MI: + interactions
βX 0.497 -0.003 74 1.488 -0.012 75

βXT -0.507 -0.007 86 -0.501 -0.001 88
βZ 0.500 0.000 75 0.500 0.000 78



Results: Log-time analysis, Normal X

10% have event 30% have event
Est bias eff Est bias eff

Time-varying MI
βX 0.497 -0.003 74 0.494 -0.006 78

βXT -0.506 -0.006 87 -0.500 -0.000 87
βZ 0.500 -0.000 76 0.502 0.002 75

Time-varying MI: + interactions
βX 0.497 -0.003 74 0.496 -0.004 79

βXT -0.507 -0.007 86 -0.498 0.002 87
βZ 0.500 0.000 75 0.503 0.003 76



Results: step function analysis

Parameter Est % Bias cov eff
Complete case
βX1 1.116 -0.005 62
βX2 0.650 -0.005 64
βX3 0.376 -0.009 65
βX4 0.214 -0.010 61
βZ 0.502 0.002 63
MI: time-varying method
βX1 1.121 -0.001 85
βX2 0.648 -0.007 80
βX3 0.379 -0.006 79
βX4 0.218 -0.006 78
βZ 0.500 -0.000 76
MI: non-time-varying method
βX1 1.019 -0.103 110
βX2 0.619 -0.036 102
βX3 0.394 0.009 98
βX4 0.256 0.033 95
βZ 0.500 0.000 76
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Testing the proportional hazards assumption

Hazard model
Data generated using the hazard model

h(T |X ,Z ) = h0(T )eβX X+βXT (logT−log5)X+βZ Z

with βXT = 0

Percentage of simulations in which the null hypothesis βXT = 0 was
rejected:

Complete data 5.0%
Complete case 5.3%
MI: time-varying method 5.3%
MI: non-timevarying method 2.2%
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Illustration: Rotterdam breast Cancer Study

I 2982 individuals with primary breast cancer from the Rotterdam
tumour bank

I Individuals followed-up for death/disease recurrence (51%)
I Sauerbrei et al (2007), Royston & Sauerbrei (2008):

time-varying effects of two variables
I tumour size: log(T )

I number of progesterone receptors (log(pgr +1)): log(T )

I I generated missing data for 20% of individuals in both variables
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Another example: Arrest after release from prison

I 432 inmates released from state prison followed up for 1 year
(Allison et al (2010))

I Factors associated with re-arrest:
I Age: time-varying effect (linear with time since release)
I Financial aid: step function, with a step 20-30 weeks after release
I Prior arrests: no time-varying effect

I 20% missingness introduced in age and financial aid



Another example: Arrest after release from prison



Another example: Arrest after release from prison



Another example: Arrest after release from prison



Another example: Arrest after release from prison



Another example: Arrest after release from prison



Outline

1. Handling missing data on explanatory variables in Cox
regression

2. Modelling time-varying effects in Cox regression

3. Derive an imputation model which handles time-varying effects

4. Simulation study

5. An application

6. An alternative approach

7. Further work



Another approach for imputation under the Cox model

I We have focused on an approximate imputation model for
p(X |T ,D,Z )

I This does not extend to allowing non-linear terms (e.g. X 2) or
interaction terms
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The Bartlett et al. approach

Aim
I For variable X with missing data and fully-observed variable Z

I To impute missing values of X by drawing from the true
distribution p(X |T ,D,Z )

The basic idea...

I Draw potential values of X from a proposal distribution p(X |Z )

I Use a rejection rule to decide whether or not to accept the
potential imputed values of X as imputed values from the desired
distribution p(X |T ,D,Z )

The method does not currently accommodate time-varying effects of
exposures
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Extending the Bartlett et al. approach

Cox proportional hazards model

h(T |X ,Z ) = h0(T )eβX X+βZ Z

1. Obtain initial estimates for βX ,βZ and their covariance

2. Draw values β
(m)
X ,β

(m)
Z from their estimated distribution

3. Fit the proposal distribution p(X |Z ) and draw parameter values
from their estimated joint distribution

4. Draw a value X ∗ from the proposal distribution

5. Draw a value U ∼ Uniform(0,1). Accept the value X ∗ if...{
U ≤ exp{−H(m)

0 (T )eβ
(m)
X X ∗+β

(m)
Z Z } if D = 0

U ≤ H(m)
0 (T )exp{1+β

(m)
X X ∗+β

(m)
Z Z −H(m)

0 (T )eβ
(m)
X X ∗+β

(m)
Z Z } if D = 1
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Extended Cox model with time-varying effects

h(T |X ,Z ) = h0(T )eβX (T )X+βZ Z

U ≤ exp{−
∫ T

0 h0(u)eβ
(m)
X X∗+β

(m)
Z Z+β

(m)
XT (u)X∗du} if D = 0

U ≤ h(m)
0 (T )exp{1 + β

(m)
X X ∗+ β

(m)
Z Z + β

(m)
XT (T )X ∗−

∫ T
0 h0(u)eβ

(m)
X X∗+β

(m)
Z Z+β

(m)
XT (u)X∗du} if D = 1

I The standard approach can be applied in R and Stata using
Jonathan Bartlett’s package smcfcs
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Extending the Bartlett et al. approach: Some results

Extended Cox model with time-varying effects

h(T |X ,Z ) = h0(T )eβX X+βXT log(T )X+βZ Z

I I simulated data for binary X and continuous Z

I Missing data on X were generated for 20% of individuals

βX βXT βZ

Complete data 0.47 (0.32) -0.53 (0.18) 0.51 (0.30)
Complete case 0.46 (0.36) -0.55 (0.22) 0.44 (0.34)
MI: non-time-varying 0.57 (0.34) -0.42 (0.15) 0.51 (0.31)
MI: Approx method 0.46 (0.36) -0.54 (0.21) 0.51 (0.31)
MI: Extended Bartlett 0.47 (0.31) -0.53 (0.18) 0.51 (0.30)
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Allowing a flexible functional form

I Everything so far requires us to specify the functional form for the
time-varying effects βX (T )

I An alternative is to somehow select a ‘best’ functional form
I Sauerbrei et al. (2007), Royston & Sauerbrei (2008): Using

fractional polynomials to model time-varying effects



Allowing a flexible functional form

Extended Cox model with time-varying effects

h(T |X ,Z ) = h0(T )eβX (T )X+βZ Z

Using a fractional polynomial of degree 1

βX (T ) = βX0 + βX1T p.

The best power p is selected from set {−2,−1,−0.5,0,0.5,1,2,3}

Aim

I Incorporate MI within this approach

I By allowing accommodating a flexible functional form for βX (T )

in the imputation model

I By selecting the best fitting FP using the imputed data sets
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Summary comments

I We should incorporate time-varying effects into the imputation
model to get unbiased estimates of time-varying effects

I ... and correct tests for proportional hazards

I The approximate approach can be easily applied in standard
software and works well in many circumstances

I The extended Bartlett et al. approach has advantages in some
situations

I ...it also allows for nonlinear terms e.g. X2

I We aim to show how these methods can be used in conjunction
with model selection and fractional polynomials
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