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Background: Causal Inference 

 The task: estimate the effect of an intervention 

 Medical treatments, public policy, gene knock-outs and 

so on 

 Gold standard: randomized controlled trial 

Vaccination Health 

Common 

causes 
P(Health | Vaccination) 



Background: Causal Inference 

 The task: estimate the effect of an intervention 

 Medical treatments, public policy, gene knock-outs and 

so on 

 Gold standard: randomized controlled trial 

Vaccination Health 

Common 

causes 
Randomize 

P(Health | do(Vaccination)) 



Goals of this talk 

X Y 

 Given binary X precedes binary Y causally, 

estimate average causal effect (ACE) using 

observational data 

ACE ≡ E[Y | do(X = 1)] – E[Y | do(X = 0)] =  

 

P(Y = 1 | do(X = 1)) – P(Y = 1 | do(X = 0)) 



Goal 

 To get an estimate of bounds of the ACE 

 Rely on the identification of an auxiliary variable 

W (witness), an auxiliary set Z (background set), 

and assumptions about strength of dependencies 

on latent variables 

X Y W 

U Z 



Observational Studies: 

Tricks of the Trade 

 Backdoor adjustment (Pearl and others): 

 

 

 

 

 

 

 P(Y = 1 | do(X = x)) =  P(Y = 1| x, u)P(u) 
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Observational Studies: 

Tricks of the Trade 

 Backdoor adjustment (justification): 

 

 

 

 

 

 

 

 Problem: where causal knowledge about U comes from? 

 Problem: what if we do not have P(Y | X, U), P(U)? 

 

 

 

 

 

 

X Y 

U 

Natural state 

X Y 

U 

Controlled state 

P(U | X)  P(U) 



Observational Studies:  

Tricks of the Trade 

 Instrumental variables 

X Y W 

U 

LP(Y, X | W) ≤ ACE ≤ UP(Y, X | W) 



Exploiting Independence Constraints 

 Faithfulness provides a way of sometimes finding a 

point estimator 

 

 Faithfulness means independence in probability iif 

“structural” independence (Spirtes et al., 1993) 

 

 



Faithfulness 

 W independent of Y, but not when given X: 

conclude the following (absentia hidden common 

causes) 

X 

Y W 

a b 



(Lack of) Faithfulness 

 W independent of Y, but not when given X: 

different structure 

X 

Y W 

a b 

-ab 



Exploiting Independence Constraints 

 In what follows, we will assume that we have access 

to a set of variables which we know are not effects 

of neither X nor Y 

 



The Problem with  

Naïve Back-Door Adjustment 

 It is not uncommon in applied sciences to posit that, 
given a large number of covariates Z that are 
plausible common causes of X and Y, we should 
adjust for all 

 

 

 Even if there are remaining unmeasured 
confounders, a common assumption is that adding 
elements of Z will in general decrease bias  
ACEtrue – ACEhat 

Pest(Y = 1 | do(X = x)) =  P(Y = 1| x, z)P(z) 
z 



The Problem with  

Naïve Back-Door Adjustment 

 Example of failure: 

X Y 

Z 

U1 U2 

Pearl (2009). Technical Report R-348 

P(Y = 1 | do(X = x)) = P(Y = 1 | X = x)   P(Y = 1 | x, z)P(z)  



Exploiting Faithfulness: 

A Very Simple Example 

 W not caused by X nor Y, X  Y 

 W    X, W   Y | X + Faithfulness. Conclusion? 

 

 

 

 Naïve estimator vindicated: 

 ACE = P(Y = 1 | X = 1) – P(Y = 1 | X = 0) 

 This super-simple nugget of causal information has 

found some practical uses on large-scale problems 

X Y 

W 

No unmeasured confounding 



A Very Simple Example 

 Consider “the genotype at a 

fixed locus L is a random 

variable, whose random 

outcome occurs before and 

independently from the 

subsequently measured 

expression values” 

 Find genes Ti, Tj such that  

L  Ti  Tj 

Chen, Emmert-Streib12 and Storey (2007) 

Genome Biology, 8:R219 



Entner et al.’s Background Finder 

 Entner, Hoyer and Spirtes (2013) AISTATS: two 

simple rules based on finding a witness W for a 

correct admissible background set Z 

 Generalizes “chain models” W  X  Z 

 

 



Rule 1: Illustration 

 Note again the necessity of the dependence of W 
and Y 

X Y 

Z 
W 

X Y 

Z 
W 
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Reverting the Question 

 What if instead of using W to find Z to make an 

adjustment by the back-door criterion, we find a Z 

to allow W to be an instrumental variable to find 

bounds on the ACE? 



Why do We Care? 

 A way to weaken the faithfulness assumption 

 Suppose also by “independence”, we might mean 

“weak dependence” (and by “dependence”, we might 

mean “strong dependence”) 

 How would interpret the properties of W in this 

case, given Rule 1? 

 



Modified Setup:  

Main Assumption Statement 

 Given Rule 1, assume W is a “conditional IV for  

X  Y” in the sense that given Z 

 All active paths between W and X are into X 

 There is no “strong direct effect” of W on Y 

 There are no “strong active paths” between W and X, 

nor W and Y, through common ancestors of X and Y 

 The definition of “strong effect/path” creates free 

parameters we will have to deal with. More on that 

later 



Motivation 

 Bounds on the ACE in the “standard IV model” can be 
quite wide even when W    Y | X  

 

 

 

 

 

 This means faithfulness can be quite a strong 
assumption, and/or “worst-case” analysis can be quite 
conservative 

X Y W 

U 



Motivation 

 Our analysis can be seen as a way of bridging the 

two extremes of point estimators of faithfulness 

analysis and IV bounds without effect constraints 

 Notice: this does not mean making stronger 

assumptions than the standard IV model 

X Y W 

U Z 



Stating Assumptions 

 Some notation first, ignoring Z for now: 

X Y W 

U 



Stating Assumptions 

X U 

Y U 

Y W 



Stating Assumptions 

W 

U 



Relation to Observations 

 

 

 

 

 Let yx.w be the expectation of the first entry by  

P(U | W): this is P(Y = y, X = x | W = w) 

 Similarly, let xw be the expectation of the second 

entry: this is P(Y = 1| do(X = x), W = w) 



Context 

 The parameterization given was originally 

exploited by Dawid (2000) and Ramsahai (2012) 

 It provides an alternative to the structural equation 

model parameterization of Balke and Pearl (1997) 

 Both approaches work by mapping the problem of 

testing the model and bounding the ACE by a linear 

program 

 We build on this strategy, with some generalizations 



Estimation 

 Simpler mapping on (*, *)  P(W, X, Y | U), 

marginalized, gives constraints on  ≡ P(W, X, Y) 

 Test whether constraints hold, if not provide no 

bounds 

 Plug-in estimates for  to get (, ) polytope. Find 

upper bounds and lower bounds on the ACE by 

solving linear program and maximizing/minimizing 

objective function 

f() = (11 – 01)P(W = 1) + (10 – 00)P(W = 0) 



Coping with Non-linearity 

 Notice that because of constraints such as 
 
 
there will be non-linear constraints in  ≡ P(W, X, Y) 

 

 The implied constraints are still linear in  ≡ P(Y | do(X), 
W). So linear programming formulation still holds, 
treating  as a constant. 

 Non-linearity on  can be a problem for estimation of  and 
derivation of confidence intervals. We will describe later a 
Bayesian approach that does that simply by rejection 
sampling 
 



Algorithm 

In what follows, we assume dimensionality of Z is small, |Z| < 10 



Recap: So far, everything in the 

population 

 “Rely on the identification of an auxiliary variable 

W (witness), an auxiliary set Z (background set), 

and assumptions about strength of dependencies 

on latent variables” 

X Y W 

U Z 



Bayesian Learning 

 To decide on independence, we do Bayesian model 
selection with a contingency table model with Dirichlet 
priors 

 For each pair (W, Z), find posterior bounds for each 
configuration of Z 

 Use Dirichlet prior for  (for each Z = z), conditioned on the 
constraints of the model, using rejection sampling 

 Propose from unconstrained Dirichlet 

 Reject model if 95% or more of proposed parameters are 
rejected in the initial round of rejection sampling 

 Feed sample from the posterior of  into linear program to 
get a sample for the upper bound and lower bound 



Difference wrt ACE Bayesian Learning 

 How not put a prior directly on the latent variable model? 

 However, model is unidentifiable  results extremely sensitive to 

priors 

 Putting priors directly into  produces no point estimates, but avoids 

prior sensibility 



Wrapping Up 

 Finally, one is left with different posterior 
distributions over different bounds on the ACE 

 Final step is how to summarize possibly conflicting 
information. Possibilities are: 

 Report tightest bound 

 Report widest bound 

 Report combined smallest lower bound with largest 
upper bound 

 Use “posterior of Rule 1” to pick a handful of bounds 
and discard others 



Recap 

 Invert usage of Entner’s Rules towards the 

instrumental variable point of view 

 Obtain bounds, not point estimates 

 Use Bayesian inference, set up a rule to combine 

possibly conflicting information 

 Because the framework relies on using a linear 

program to protect a witness variable against 

violations of faithfulness, we call this the  

Witness Protection Program (WPP) framework 



Scaling Up 

 There are four main bottlenecks: 

 The witness search procedure 

 Posterior sampling of parameters 

 Rejection criterion 

 Averaging over P(Z) 

 Running linear programs to obtain bounds (potentially 

expensive if done separately for each posterior 

sample) 

 We address here problems of sampling and bound 

optimization, which can be solved by the same idea 



Direct Polytope Manipulation 

 This is one of the “instrumental inequalities” of the standard 
IV model, derived directly  

 Bounding * by one of its extreme points 

 Modify factor in a way to map it to  and , perform further 
manipulations 

 Useful as a way of deriving symbolic bounds as a function 
of the extreme points of the original parameter space 



Direct Polytope Manipulation 

 In the accompanying paper, we describe several 
analytical bounds on P(Y | do(X), W) as a function of 
P(W, X, Y) and constraints 
 

 

 

 

 

 This are used to generate relaxed (i.e., 
underconstrained) linear programming problems which 
are much more efficient to solve 



Illustration: Synthetic Studies 

 4 observable nodes, “basic set”, form a pool that can 
generate a possible (witness, background set) pair 

 4 observable nodes form a “decoy set”: none of them 
should be included in the background set 

 Graph structures over “basic set” + {X, Y} are chosen 
randomly 

 Observable parents of “decoy set” are sampled from 
“basic set” 

 Each decoy has another four latent parents, {L1, L2, L3, L4} 

 Latents are mutually independent 

 Each latent variable Li uniformly chooses either X or Y as a 
child  

 Conditional distributions are logistic regression models with 
pairwise interactions 



Illustration: Synthetic Studies 

 Relaxations 

 

 

 

 

 

 

 Estimators: 

 Posterior expected bounds 

 Naïve 1: back-door adjustment conditioning on everybody 

 Naïve 2: plain P(Y = 1 | X = 1) – P(Y = 1 | X = 0) 

 Backdoor by faithfulness 

X Y W 

U 

(0.9, 1.1), (1, 1) 

0.2 

0.2 

0.2 



Example 

 Note: no theoretical witness solution 

Y X 

L1 

W4 

W1 

W2 

W3 

D1 D2 D3 D4 

L4 L3 L2 



Evaluation 

 Bias definition: 

 For point estimators, just absolute value of difference 
between true ACE and estimate 

 For bounds, Euclidean distance between true ACE and 
nearest point in the bound 

 Summaries (over 100 simulations): 

 Bias average 

 Bias tail mass at 0.1 

 proportion of cases where bias exceeds 0.1 

 Notice difficulty of direct comparisons 



Summary 

Bias average Bias tail mass at 0.1 



Summary 



Influenza Data 

 Effect of influenza vaccination (X) on hospitalization 

(Y = 1 means hospitalized) 

 Covariate GRP: randomized, doctor of that patient 

received letter to encourage vaccination 

 (GRP, X, Y) ACE bound using standard IV: [-0.23, 0.64] 

 WPP could not validate GRP. Instead it picked DM 

(diabetes history) as a witness, and AGE 

(dichotomized at 60 years) and SEX as admissible 

set 



Influenza Data 

 Using same parameters as synthetic case study (0.9- 

1.1 for ), WPP estimated interval as [-0.10, 0.17] 



Influenza Data: Full Posterior Plots 



Influenza Data: Full Posterior Plots 



On-going Work 

 Finding a more primitive default set of assumptions 
where assumptions about the relaxations can be 
derived from 

 Doing without a given causal ordering 

 Large scale experiments 

 Scaling up for a large number of covariates 

 Continuous data 

 More real data experiments 

 R package to follow 

http://arxiv.org/abs/1406.0531 



Thank You 



Extra 



Mapping IV Model to Observations 

 For now, assume model where W   U 

 Let 
 
 
and recall 

 

 

 

 

 Idea: define a mapping from (*, *) to *, then take 
convex combinations 



Mapping 



Recipe 

 Map the extreme points of (*, *) to the extreme points of 
(*, *) 

 Find convex hull of (*, *)  Show to be equivalent to the 
set of (, ) allowable by the IV model. And 

 

 

 

 

 Re-express convex hull as linear inequalities (and equalities) 

  is observable/possible to estimate. Fixing  gives bounds 
on  



Estimation 

 Simpler mapping on (*, *)  P(W, X, Y | U), 

marginalized, gives constraints on  ≡ P(W, X, Y) 

 Test whether constraints hold, if not provide no 

bounds 

 Plug-in estimates for  to get (, ) polytope. Find 

upper bounds and lower bounds on the ACE by 

solving linear program and maximizing/minimizing 

objective function 

f() = (11 – 01)P(W = 1) + (10 – 00)P(W = 0) 



All is Well? 

 It follows then min f() ≤ ACE ≤ max f() 

 However, recall we mentioned this always has width 

1… and actually there are no constraints on ! 

 Further assumptions required. For instance: 

 Assume no direct effect of W on Y (change 

parameterization and mapping) 

 Assume monotonicity  

P(Y = 1| do(X = 0))  ≤ P(Y = 1| do(X =1)) 

 Allow for bounded effect of W on Y,  

 See Ramsahai (2012) for details 



Adding More Assumptions 

 In the linear programming formulation, an 

assumption such as                         is translated 

into a set of extreme points different from {(0, 0), 

(0, 1), (1, 0), (1, 1)} 

 Ramsahai (2012) provides analytical bounds for a 

given, numerical, value of w 

 Constraints such as 

are included by fixing P(X = 1 | W = w) first, the 

redefining the extreme points of parameter 

 Notice this implies non-linear constraints on  



Linking U and W 

 What about 

 

 

 This redefines our expectations 

 

 

 Without further assumptions on P(U | W), linear 
program can be done as before, obtaining bounds 
for each value of W (Ramsahai, 2012) 

 Bounds always span zero 

W U 



Linking U and W 

 An additive relaxation  

P(U) –  ≤ P(U | W) ≤ P(U) +  would however be 

problematic. Hence, the multiplicative relaxation 

 Introduce intermediate parameterization 

 



Linking U and W 

 Follow recipe as before, but applying to the new – 

unobservable – variables 

 Link them to observable  and target  using 

 

 

 For instance 



Rejection Sampling 

 If we have the polytope, then this is a very cheap 

check of whether linear inequalities are satisfied 

 However, we need to obtain the polytope as a 

function of . Better do that in an analytic way, or 

otherwise a numerical polytope calculation 

procedure for each sample will not be feasible 

 Difficulty: extreme points of (*, *) are not the 

extremes of the unit hypercube anymore 



Main Idea 

 Let’s go back to the original mapping: 

 

 

 

 

 

 

 

 Without further assumptions, what can we say? 



Main Idea 

 Implied bounds follow from the 
probability simplex constraints 

 Notice the need for X to be 
discrete 

 As pointed out by Balke and 
Pearl,  is feasible if no upper 
bound on  is smaller than any 
lower bound 

 What happens when we 
introduce the assumption “no 
direct effect of W on Y”? 



Direct Polytope Manipulation 

 This is one of the “instrumental inequalities” of the standard 
IV model, derived directly  

 Bounding * by one of its extreme points 

 Modify factor in a way to map it to  and , perform further 
manipulations 

 Useful as a way of deriving symbolic bounds as a function 
of the extreme points of the original parameter space 



Our More General Case 

 Start from 

 

 

 

 

 

 

 

 Like in the previous slide, we create new bounds by 
multiplying and marginalizing pieces of the latent 
variable model 



Examples 

 Case 1 (Fails to obtain new bound) 

 

 

 

 Case 2 (Generalizes                           ) 



Solving the Linear Program 

 The very same (symbolic) bounds used for verifying 

the feasibility of  can be used in a straightforward 

way to bound the ACE 


