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Background: Causal Inference
S =

1 The task: estimate the effect of an intervention

o1 Medical treatments, public policy, gene knock-outs and
SO on

1 Gold standard: randomized controlled trial

Common P(Health | Vaccination)
causes

Vaccination Health



Background: Causal Inference
S

1 The task: estimate the effect of an intervention

o1 Medical treatments, public policy, gene knock-outs and
SO on

1 Gold standard: randomized controlled trial

Common P(Health | do(Vaccination))

causes
Randomize

Vaccination Health



Goals of this talk

Given binary X precedes binary Y causally,
estimate average causal effect (ACE) using
observational data

00

ACE =E[Y | do(X = 1)] —E[Y | do(X = 0)] =

PY=1 | do(X=1))=P(Y =1 | do(X = 0))



Goal

To get an estimate of bounds of the ACE

Rely on the identification of an auxiliary variable
W (witness), an auxiliary set Z (background set),
and assumptions about strength of dependencies
on latent variables
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Observational Studies:

Tricks of the Trade
N

11 Backdoor adjustment (Pearl and others):

OP(Y=1 ] do(X=x))=2 P(Y=1] x, u)P(u)



Observational Studies:

Tricks of the Trade
]

-1 Backdoor adjustment (justification):

* Q‘:* P(U)

Natural state Controlled state

1 Problem: where causal knowledge about U comes from?
-1 Problem: what if we do not have P(Y | X, U), P(U)?




Observational Studies:

Tricks of the Trade
]

1 Instrumental variables

Loy, x | w) = ACE < Upiy x| w



Exploiting Independence Constraints

Faithfulness provides a way of sometimes finding a
point estimator

Faithfulness means independence in probability iif
independence (Spirtes et al., 1993)

“structura



Faithfulness

7 W independent of Y, but not when given X:
conclude the following (absentia hidden common
causes)




(Lack of) Faithfulness

7 W independent of Y, but not when given X:
different structure




Exploiting Independence Constraints
—

7 In what follows, we will assume that we have access
to a set of variables which we know are not effects
of neither X nor Y



The Problem with
Naive Back-Door Adjustment

It is not uncommon in applied sciences to posit that,
given a large number of covariates Z that are
plausible common causes of X and Y, we should
adijust for all
P..(Y=1]doX=x))=2PY=1] x, z)P(z)
Z
Even if there are remaining unmeasured

confounders, a common assumption is that adding
elements of Z will in general decrease bias

ACE, _— ACE, .

true



The Problem with

Naive Back-Door Adjustment
-—

1 Example of failure:

PY=1|do(X=x))=P(Y=T1 ]| X=x)Z2P(Y=1| x, z)P(z)

Pearl (2009). Technical Report R-348



Exploiting Faithfulness:
A Very Simple Example

W not caused by X nor Y, X 2 Y
W XX, WLLY | X + Faithfulness. Conclusion?

O

No unmeasured confounding

0o—0

Naive estimator vindicated:
ACE=P(Y=1 | X=T1)=PY=1 | X=0)

This super-simple nugget of causal information has
found some practical uses on large-scale problems



A Very Simple Example

-
1 Consider “the genotype at o

fixed locus L is a random
variable, whose random
outcome occurs before and
independently from the
subsequently measured
expression values”

-1 Find genes Ti, Tj such that
L2 Ti 2T
Figure 2
A transcriptional regulatory network drawn from a Trigger probability

Chen Emmer'r-S’rreib 1 2 qnd s.rorey (2007) threshold of 90%. The network consists of 4,394 genes, 2,145 causal
’

relationships, and 127 causal genes. Genes are represented by orange

Genome Bio'°9Yl 8:R219 circles and causal relationships are represented by directed edges with
black arrows.



Entner et al.'s Background Finder

Entner, Hoyer and Spirtes (201 3) AISTATS: two
simple rules based on finding a witness W for a
correct admissible background set Z

Generalizes “chain models” W —5 X —> Z

R1: If there exists a variable w € W and a set Z C
W\ {w} such that

(i) wly|Z, and
(ii) wlly | Z2U {z}

then infer ‘+’ and give Z as an admissible set.



Rule 1: lllustration
I e

R1: If there exists a variable w € W and a set Z C
W {w} such that

(i) wlly| 2, and
(i) wly| 2U{z}

then infer ‘£’ and give Z as an admissible set.

1 Note again the necessity of the dependence of W
and Y



Reverting the Question

What if instead of using W to find Z to make an
adjustment by the back-door criterion, we find a Z

to allow W to be an instrumental variable to find
bounds on the ACE?



Why do We Care?

A way to weaken the faithfulness assumption

Suppose also by “independence”, we might mean
“weak dependence” (and by “dependence”, we might
mean “strong dependence”)
How would interpret the properties of W in this
case, given Rule 12

R1: If there exists a variable w € W and a set Z C
W\ {w} such that

(i) w L y|Z, and
(i) wlly | Z2U{z}

then infer ‘£’ and give Z as an admissible set.



Modified Setup:
Main Assumption Statement

Given Rule 1, assume W is a “conditional IV for
X =2 Y” in the sense that given Z

All active paths between W and X are into X
There is no “strong direct effect” of W on Y

There are no “strong active paths” between W and X,
nor W and Y, through common ancestors of X and Y
The definition of “strong effect/path” creates free

parameters we will have to deal with. More on that
later



Motivation

Bounds on the ACE in the “standard IV model” can be
quite wide even when W1LY | X

0-0—-0

This means faithfulness can be quite a strong
assumption, and/or “worst-case” analysis can be quite
conservative



Motivation

Our analysis can be seen as a way of bridging the
two extremes of point estimators of faithfulness
analysis and IV bounds without effect constraints

Notice: this does not mean making stronger
assumptions than the standard |V model
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Stating Assumptions
_

1 Some notation first, ignoring Z for now:

*
YT.w

Mew
5*



Stating Assumptions

1
nm = PY=1|X=x.W=wU)

PIX=1|W =uw,U)

‘ 0 0 —P(X=1|W=w)| <e,

‘»‘ i~ POV = 1] X =W =w)| <6,

1 — o | < Ew’

]
~-—————__




Stating Assumptions




Relation to Qbservations

Grw = POV =y, X =2 | W =w,0)
o= PY =1 X =2, W=uwl)
0F = P X=1|W=w,U)
Let C, ., be the expectation of the first entry by

PU | W)thisisP(Y=y,X=x | W=w)
Similarly, let ., be the expectation of the second
entry: this is P(Y = 1| do(X = x), W = w)



Context

The parameterization given was originally

exploited by Dawid (2000) and Ramsahai (201 2)

It provides an alternative to the structural equation
model parameterization of Balke and Pearl (1997)

Both approaches work by mapping the problem of
testing the model and bounding the ACE by a linear
program

We build on this strategy, with some generalizations



Estimation

Simpler mapping on (6%, ') 2 P(W, X, Y | U),
marginalized, gives constraints on C = P(W, X, Y)

Test whether constraints hold, if not provide no
bounds

Plug-in estimates for _ to get (C, n) polytope. Find
upper bounds and lower bounds on the ACE by
solving linear program and maximizing /minimizing
objective function

fn) = (M1 =M )PW = 1) + (M0 — Noo)P(W = 0)



Coping with Non-linearity

Notice that because of constraints such as
0F —P(X=1|W =w)| < e,

there will be non-linear constraints in = P(W, X, Y)

The implied constraints are still linear in 1 = P(Y | do(X),
W). So linear programming formulation still holds,
treating C as a constant.
Non-linearity on ( can be a problem for estimation of C and
derivation of confidence intervals. We will describe later a

Bayesian approach that does that simply by rejection
sampling



Algorithm
—

In what follows, we assume dimensionality of Z issmall, |Z]| < 10

input : Binary data matrix D; set of relaxation parameters #; covariate index set VV; cause-effect
indices X and Y
output: A list of pairs (witness, admissible set) contained in W

L+
for each W € W do
for every admissible set Z C W\{ W} identified by W and 6 given D do
B «+ posterior over upper/lowed bounds on the ACE as given by (W, Z, X, Y. D, ),
if there is no evidence in B to falsify the (W, Z. #) model then
| L+ LU{B}:
end

end

end
return £



Recap: So far, everything in the

opulation
-b

71 “Rely on the identification of an auxiliary variable
W (witness), an auxiliary set Z (background set),
and assumptions about strength of dependencies
on latent variables”




Bayesian Learning

To decide on independence, we do Bayesian model
selection with a contingency table model with Dirichlet
priors

For each pair (W, Z), find posterior bounds for each
configuration of Z

Use Dirichlet prior for C (for each Z = z), conditioned on the
constraints of the model, using rejection sampling
Propose from unconstrained Dirichlet

Reject model if 25% or more of proposed parameters are
rejected in the initial round of rejection sampling

Feed sample from the posterior of C into linear program to
get a sample for the upper bound and lower bound



Difference wrt ACE Bayesian Learning
—

1 How not put a prior directly on the latent variable model?

However, model is unidentifiable = results extremely sensitive to
priors

Putting priors directly into C produces no point estimates, but avoids
prior sensibility

ACE distribution, mean = -0.29 ACE distribution, mean = -0.05 ACE distribution, mean 5 £0.07
1 | 1

1 Postarior 4- 1 Posterior 1 Posterior

I Prior 1 Prior I Prior

1 | 1
1 1 1
1 | 10 1
£4 ' 1 £ 1 £ 1
8 I 82 | g i
1 1
2 L/ 1 1
1 1 I
I 1
; — I , ] 1

0.0 0.0 0.5 1.0 =1.0 =0.5 0.0
effect effect effect



Wrapping Up

Finally, one is left with different posterior
distributions over different bounds on the ACE

Final step is how to summarize possibly conflicting
information. Possibilities are:

Report tightest bound

Report widest bound

Report combined smallest lower bound with largest
upper bound

Use “posterior of Rule 1” to pick a handful of bounds
and discard others



Recap

Invert usage of Entner’s Rules towards the
instrumental variable point of view

Obtain bounds, not point estimates

Use Bayesian inference, set up a rule to combine
possibly conflicting information

Because the framework relies on using a linear
program to protect a witness variable against
violations of faithfulness, we call this the

Witness Protection Program (WPP) framework



Scaling Up

There are four main bottlenecks:
The witness search procedure

Posterior sampling of parameters
Rejection criterion

Averaging over P(Z)

Running linear programs to obtain bounds (potentially
expensive if done separately for each posterior
sample)
We address here problems of sampling and bound
optimization, which can be solved by the same idea



Direct Polytope Manipulation

o<1
ni(l—of) < 1-0f
m—=Cr1 < 1—=(G11+ Gr1) (marginalization)
Gi1.0 — Cir1 < 1= (Crir + Cort)  (since gy = 110 > Cr10)
G110 T Corr <1

This is one of the “instrumental inequalities” of the standard
IV model, derived directly

Bounding 1" by one of its extreme points

Modify factor in a way to map it to C and n, perform further
manipulations

Useful as a way of deriving symbolic bounds as a function
of the extreme points of the original parameter space



Direct Polytope Manipulation

In the accompanying paper, we describe several

analytical bounds on P(Y | do(X), W) as a function of
P(W, X, Y) and constraints

L . YU/, .
“rw 2 Klg.aw T L:ru, (’L"OI".%‘ + "Ll-lfl:’.fw)
, : . . : XU
wWew <1 — (Koz.w — €w(Koz.w + h-l:l:.-w’))/[fg:wf
T_X{,r . - . .

Wew — Lu‘:l;waI;w < Kiz.w + f—‘w("’l-ﬂm’.w T h-l;r’.w)

. . . . T o
Wow + Wety — Wary! = Klzrw + Rlz.aw — Klz/.w’ + Klz.w' — Xzw’ ([ T L T 2*‘%) + L

This are used to generate relaxed (i.e.,
underconstrained) linear programming problems which
are much more efficient to solve



lllustration: Synthetic Studies

4 observable nodes, “basic set”, form a pool that can
generate a possible (witness, background set) pair

4 observable nodes form a “decoy set”: none of them
should be included in the background set

Graph structures over “basic set” + {X, Y} are chosen
randomly

Observable parents of “decoy set” are sampled from
“basic set”

Each decoy has another four latent parents, {L,, L,, L5, L,}
Latents are mutually independent

Each latent variable L, uniformly chooses either X or Y as a
child

Conditional distributions are logistic regression models with
pairwise interactions



lllustration: Synthetic Studies

1 Relaxations

o1 Estimators: 0.2
o1 Posterior expected bounds
o1 Naive 1: back-door adjustment conditioning on everybody
0 Naive 2: plainP(Y =1 | X=1)=P(Y=1 | X=0)
o1 Backdoor by faithfulness



Example

Ion

ical withess solut

1 Note: no theoret




Evaluation

Bias definition:

For point estimators, just absolute value of difference
between true ACE and estimate

For bounds, Euclidean distance between true ACE and
nearest point in the bound

Summaries (over 100 simulations):

Bias average

Bias tail mass at 0.1

proportion of cases where bias exceeds 0.1

Notice difficulty of direct comparisons



Summary

Hard, Solvable: NE1 = (0.12,1.00), NE2 = (0.02,0.03)

ke | Found Faith.1 WPP1 Width1l WPP2 Width2
0.05 | 0.74 0.03 | 0.05 || 0.02 | 0.05 0.05 0.00 | 0.00 0.34
0.10 | 0.94 0.04 | 0.05 || 0.01 | 0.01 0.11 0.00 | 0.00 0.41
0.15 | 0.99 0.04 | 0.05 || 0.01 | 0.02 0.16 0.00 | 0.00 0.46
0.20 | 1.00 0.05 | 0.05 || 0.01 | 0.01 0.24 0.00 | 0.00 0.93
0.25 | 1.00 0.05 | 0.07 || 0.00 | 0.00 0.32 0.00 | 0.00 0.60
0.30 | 1.00 0.05 | 0.10 || 0.00 | 0.00 0.41 0.00 | 0.00 0.69
Easy, Solvable: NE1 = (0.01,0.01), NE2 = (0.07,0.24)

ke | Found Faith.1 WPP1 Widthl WPP2 Width2
0.05 | 0.81 0.03 | 0.02 || 0.02 | 0.04 0.04 0.00 | 0.01 0.34
0.10 | 0.99 0.02 | 0.02 || 0.01 | 0.02 0.09 0.00 | 0.00 0.40
0.15 | 1.00 0.02 | 0.01 || 0.00 | 0.00 0.17 0.00 | 0.00 0.46
0.20 | 1.00 0.02 | 0.01 || 0.00 | 0.00 0.24 0.00 | 0.00 0.54
0.25 | 1.00 0.02 | 0.01 || 0.00 | 0.00 0.32 0.00 | 0.00 0.61
0.30 | 1.00 0.02 | 0.01 || 0.00 | 0.00 0.41 0.00 | 0.00 0.67

Bias average

Bias tail mass at 0.1



Summary

Ll

Hard, Not Solvable: NE1 = (0.16, 1.00), NE2 = (0.20, 0.88)

k. | Found Faith.1 WPP1 Widthl WPP2 Width?2
0.05 | 0.67 0.20 | 0.90 || 0.17 | 0.76 0.06 0.04 | 0.14 0.32
0.10 | 0.91 0.19 | 0.91 || 0.13 | 0.63 0.10 0.02 | 0.07 0.39
0.15 | 0.97 0.19 | 0.92 || 0.10 | 0.41 0.18 0.01 | 0.03 0.45
0.20 | 0.99 0.19 | 0.95 || 0.07 | 0.25 0.24 0.01 | 0.01 0.51
0.25 | 1.00 0.19 | 0.96 | 0.03 | 0.13 0.31 0.00 | 0.00 0.58
0.30 | 1.00 0.19 | 0.96 || 0.02 | 0.06 0.39 0.00 | 0.00 0.66
Easy, Not Solvable: NE1 = (0.09,0.32), NE2 = (0.14,0.56)

k. | Found Faith.1 WPP1 Widthl WPP2 Width2
0.050 | 0.68 0.13 | 0.51 || 0.10 | 0.37 0.05 0.02 | 0.07 0.33
0.10 | 0.97 0.12 | 0.53 || 0.08 | 0.28 0.10 0.01 | 0.05 0.39
0.15 | 1.00 0.12 | 0.52 || 0.05 | 0.17 0.16 0.01 | 0.03 0.46
0.20 | 1.00 0.12 | 0.53 || 0.03 | 0.08 0.23 0.01 | 0.03 0.52
0.25 | 1.00 0.12 | 0.48 || 0.02 | 0.05 0.31 0.00 | 0.02 0.59
0.30 | 1.00 0.12 | 0.48 || 0.01 | 0.04 0.39 0.00 | 0.01 0.65




Influenza Data

Effect of influenza vaccination (X) on hospitalization
(Y = 1 means hospitalized)

Covariate GRP: randomized, doctor of that patient
received letter to encourage vaccination
(GRP, X, Y) ACE bound using standard 1V: [-0.23, 0.64]

WPP could not validate GRP. Instead it picked DM

(diabetes history) as a witness, and AGE
(dichotomized at 60 years) and SEX as admissible
set



Influenza Data

Using same parameters as synthetic case study (0.9-
1.1 for B), WPP estimated interval as [-0.10, 0.17]



Influenza Data: Full Posterior Plots
=

Posterior distribution

Upper bound

014 -012 -010 -008 —0.0¢
Lower bound



Influenza Data: Full Posterior Plots
S —

Marginal Posterior Distribution (means: [-0.07, 0.16])
25 -

30 - 20 -
15
220 =
2 2
] ]
10 -
10 -
5- j \
0- } \ } 0 -
-EII.Z D:D 0!2
effect

1 1 1
=0.2 0.0 0.2
effect



On-going Work

Finding a more primitive default set of assumptions
where assumptions about the relaxations can be
derived from

Doing without a given causal ordering
Large scale experiments

Scaling up for a large number of covariates
Continuous data

More real data experiments

R package to follow

http:/ /arxiv.org/abs/1406.0531



Thank You



Extra




Mapping IV Model to Observations
=

-1 For now, assume model where W1LU

0 Let
Cprw = 2, Ply, x| w,u)P(u)
and recall
C;m = P(}f =, X =1 | W = v, L,T)
n, = PY=1|X=xW=uwU)
00 = P X=1|W=w,U)

0 Idea: define a mapping from (n°, 8°) to £ then take
convex combinations



Mapping
S =

Moo o1 Mo M1 00 Of

!

Cgo.o CSI.D Cfo.o Cﬁ.o Cao.l C§1.1 Cfm CT1.1 Mo Mo1 "o M1

Cooo = (1 —=mip)(1—05)
Coro = (L—=119)dg

Cloo = Mool —97)

(1o = Mo%%

Goor = (L —=mg)(1—07)
Cor1 = (L—mn1p)o7

Glog = ”751(1 - 5D

- - -+
C11.1 ”71151



Recipe

Map the extreme points of (°, 8°) to the extreme points of
(Sl

Find convex hull of (£*, ) 2 Show to be equivalent to the
set of (C, n) allowable by the IV model. And

Yy PY=1|X=0W=wU)PU)
P(Y = l | do(X =x2). W = w)

Harw

Re-express convex hull as linear inequalities (and equalities)

C is observable /possible to estimate. Fixing C gives bounds

on M



Estimation

Simpler mapping on (6%, ') 2 P(W, X, Y | U),
marginalized, gives constraints on C = P(W, X, Y)

Test whether constraints hold, if not provide no
bounds

Plug-in estimates for _ to get (C, n) polytope. Find
upper bounds and lower bounds on the ACE by
solving linear program and maximizing /minimizing
objective function

fn) = (M1 =M )PW = 1) + (M0 — Noo)P(W = 0)



All is Well¢

It follows then min f(n) < ACE < max f(n)

However, recall we mentioned this always has width
1... and actually there are no constraints on (!

Further assumptions required. For instance:

Assume no direct effect of W on Y (change
parameterization and mapping)

Assume monotonicity

P(Y=1| do(X=0)) <P(Y=1] do(X =1))

Allow for bounded effect of Won Y, |15 — 710 | < &,
See Ramsahai (2012) for details



Adding More Assumptions

In the linear programming formulation, an
assumption such as 751 — 1o | < &, is translated
into a set of extreme points different from {(0, 0),
0, 1), (1,0), (1, 1)}

Ramsahai (201 2) provides analytical bounds for a
given, numerical, value of ¢,

Constraints such as |O£ — P (X — 1 | W = "UI-‘)| < €,
are included by fixing P(X = 1 | W = w) first, the
redefining the extreme points of parameter

Notice this implies non-linear constraints on



Linking U and W

What about

‘ Q PU | W =w) < 3P(U)

This redefines our expectations
e = Sy PV =1| X =2, W =w U)P(U | W)
= P(Y =1|do(X =2x).W =w)

Without further assumptions on P(U | W), linear

program can be done as before, obtaining bounds
for each value of W (Ramsahai, 201 2)

Bounds always span zero

IA



Linking U and W

An additive relaxation

P(U)—e < P(U | W) < P(U) + € would however be
problematic. Hence, the multiplicative relaxation

Introduce intermediate parameterization

Cow = Y pPY =y X=2|W=wU)PU|W =uw)
Kyew = ypP(Y =1 .X =x | W=w,U)P(U)

hew = SpPY =1 X=2,W=uwU)PU|W)
Wow = D> PY =1 X=0W=uw, (-)P(U)
0w = P(X=1|W =w)

New = Do P(X =z |W=wU)PU)



Linking U and W

Follow recipe as before, but applying to the new —
unobservable — variables

Link them to observable C and target 1 using

3 p( U) <P ( [] | W = u ) < ;v P ( U)

For instance

fyrww = PY =y X=2|W=uw)/j
e < P(Y =y X =2 | W =u)/3
Yow > P X =2 |W=uw)/p
New < P(X =2 |W=w)/p



Rejection Sampling

If we have the polytope, then this is a very cheap
check of whether linear inequalities are satisfied

However, we need to obtain the polytope as o
function of C. Better do that in an analytic way, or
otherwise a numerical polytope calculation
procedure for each sample will not be feasible

Difficulty: extreme points of (8", {') are not the
extremes of the unit hypercube anymore



Main ldea

N
11 Let’s go back to the original mapping:

Cooo = (1 —=mnd)(1—467)

Coro = (I —m10)0g

Cloo = Mol —0g)

Clio = Moo

Coo.1 = (L—=mng)(1—07)
Cor1 = (I—mn1)o7

Clo1 = "o (‘1 — 07)

Cl11 = M101

0 Without further assumptions, what can we say?



Main ldea

Implied bounds follow from the
probability simplex constraints

Notice the need for X to be
discrete

As pointed out by Balke and
Pearl, C is feasible if no upper
bound on 1 is smaller than any
lower bound

What happens when we

introduce the assumption “no
direct effect of W on Y2

i
110
i1
110
o1
o1
100
1100

IAN TV NIV INIAN IV IV

C11.1
G11.0
1 —Cor1
1 T C{:}l,{:]
(10.1
1 — Coo1
(10.0
1 — Goo.0



Direct Polytope Manipulation

o<1
ni(l—of) < 1-0f
m—=Cr1 < 1—=(G11+ Gr1) (marginalization)
Gi1.0 — Cir1 < 1= (Crir + Cort)  (since gy = 110 > Cr10)
G110 T Corr <1

This is one of the “instrumental inequalities” of the standard
IV model, derived directly

Bounding 1" by one of its extreme points

Modify factor in a way to map it to C and n, perform further
manipulations

Useful as a way of deriving symbolic bounds as a function
of the extreme points of the original parameter space



Qur More General Case
-

1 Start from

max(P(Y = 1[X =0, W = w) —e,0) = L}
win(P(Y = 11X = o, = w) + 1) = U0
1113.1\{( P (X — 1|I’[ — 'L{.-*) — €, O) — Li U
min(P(X = 1|W =w) +6,.1) = UNY

o< g, < UV

Tw — — Tw

XU Sk T XU
L w S O-u.-* < L w

11 Like in the previous slide, we create new bounds by
multiplying and marginalizing pieces of the latent
variable model



Examples
S

r1 Case 1 (Fails to obtain new bound)

M < Ul
n.,o0n < Um * (Marginalize over P(U))
e < UlLUy. (Always true)

71 Case 2 (Generalizes wow <1 — Koo.w )

Mow < Upy
Mow(l—(1=203)) < U, o5
Wow — R10.w S U{}];;UXW
wWow < K10 + Uy (Kotw + Kilw)



Solving the Linear Program

The very same (symbolic) bounds used for verifying
the feasibility of C can be used in a straightforward
way to bound the ACE



