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Information Theory deals with
@ Communication
@ Compression (Lossless and Lossy)

@ Multi-terminal communication and compression:

Multiple-access channels, Broadcast channels, Distributed
compression, . ..

@ Sharp characterization of achievable rates for many of these
problems
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Information Theory deals with

@ Communication
@ Compression (Lossless and Lossy)

@ Multi-terminal communication and compression:

Multiple-access channels, Broadcast channels, Distributed
compression, . ..

@ Sharp characterization of achievable rates for many of these
problems

Textbook code constructions are based on:
- Random coding for point-to-point communication and
compression

- Superposition and binning for multi-terminal problems

- High complexity of storage and coding: exponential in “n

N
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GOAL:
e Codes with compact representation + fast encoding/decoding

‘Fast’ = polynomial in n

@ In the last 20 years, many advances:

LDPC/LDGM codes, Polar codes for finite-alphabet sources &
channels

@ We will focus on Gaussian sources and channels here



In this talk ...

@ Ensemble of codes based on sparse linear regression

@ Provably achieve rates close to info-theoretic limits with fast
encoding + decoding

@ Based on construction of Barron & Joseph for AWGN channel
- Achieve capacity with fast decoding [IT Trans. '12, '14]



In this talk ...

@ Ensemble of codes based on sparse linear regression

@ Provably achieve rates close to info-theoretic limits with fast
encoding + decoding

@ Based on construction of Barron & Joseph for AWGN channel
- Achieve capacity with fast decoding [IT Trans. '12, '14]

QOutline

o We'll focus on the compression problem:
- Fundamental limits of the code (with optimal encoding)

- Computationally efficient compression algorithm & analysis

@ Extension to multi-terminal communication and compression




Lossy Compression

R nats/sample
— | Codebook|| it

S=9,...,5 S=29,....59,

o Distortion criterion: 1||S — S|I2 = IS (S — Sk)?
o To achieve 1||S — S| < D, need
R > R*(D) = minp, _ 1(5;$)
e For i.i.d N(0,02) source, R*(D) = % log "—5, D <o?

= Minimum possible distortion D*(R) = o?e %<
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Lossy Compression

R nats/sample
— | Codebook|| it

S=9,...,5 S=29,....59,

o Distortion criterion: 1||S — S|I2 = IS (S — Sk)?
o To achieve 1||S — S| < D, need
R > R*(D) = minp, _ 1(5;$)
e For i.i.d N(0,02) source, R*(D) = % log %, D <o?

= Minimum possible distortion D*(R) = o?e %<

Can we achieve this with Jow-complexity algorithms? ), 2



Sparse Regression Codes (SPARC)

n TOWS

@ A: design matrix or ‘dictionary’ with ind. N(0, 1) entries

@ Codewords Af - sparse linear combinations of columns of A

42



SPARC Construction

Section 1 Section 2 Secti
t L
M columns M columns Mi?oii?nns
— I I \‘ﬁ
A. : : 3 . TOWS
| | | T
B0, 0l 060, 0, 0]
n rows, ML columns J
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SPARC Construction

Section 1 Section 2 Section L
M columns M columns M columns
- -
A: ! ! : n TOWS
I ! r
I5; [0, 0, c, 0,¢,0, c, 0, ,0}
n rows, ML columns )

Choosing M and L:
e For rate R codebook, need ML = e"R
@ Choose M = L for b>1 = blLlogl = nR



SPARC Construction

Section 1 Section 2 Section L
M columns M columns M columns
- -
A: | |
I ! r
I5; [0, 0, c, 0,¢,0, c, 0, ,0}

n rows, ML columns

7 TOWS

Choosing M and L:

For rate R codebook, need ML = e

Choose M = L for b>1 = blLloglL = nR

L ~ n/logn and M ~ polynomial in n

Storage Complexity <> Size of A: polynomial in n

42



Minimum Distance Encoding

Section 1 Section 2 Section L
L columns LY columns < L' columns

B | ;
I I |

A:

n TOWs

| I I T

B o, 0t 0,60, | e,0, 0]

Given source sequence S with variance o?:

o Encoder. Find 3 = argmin ||S — Aj|2
B

o Decoder. Reconstruct § = ABA
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Minimum Distance Encoding

Section 1 Section 2

Section L
L' columns L' columns LY columns
h >
A:
n rows
. \ \ T
B, 0 0,60, | ¢,0, 0]

Given source sequence S with variance o?:

o Encoder. Find 3 = argmin ||S — Aj|2
B

o Decoder. Reconstruct § = ABA
P,=P(L|S—AB|?> D)

@ Want to show that P, — 0 if R > %Iog%

@ Also want asymptotic rate of decay (error exponent)

42



SPARC Rate-Distortion Function
Theorem (RV-Joseph-Tatikonda '12, RV-Tatikonda '14)

For a source with variance o2, SPARCs with minimum-distance

encoding achieve distortion D for all rates
2

1 o
R > = log —
~ 2% p
when b > b, where
R=i1D/e if R>(1-25)
(Ot =
o ke ifR<(1-53)

(-1 (-B)e+3)-2R)
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SPARC Rate-Distortion Function
Theorem (RV-Joseph-Tatikonda '12, RV-Tatikonda '14)

For a source with variance o2, SPARCs with minimum-distance

encoding achieve distortion D for all rates
2

1 o
when b > b, where
Rest07 if R>(1-2)

bmin =
40R : D
(a5 1) (02 B)-2R) i

Note:
2

D
( ? ) < D

o2

42



Setting up the analysis

Call B a solution if |S — AB|> < D J

Fori=1,...,e"R, define

1 if B(i) is a solution ,
Ui = .
0 otherwise.

The number of solutions X is

X:U1++UenR

Want to show P(X >0) - 1 as n— o J
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Setting up the analysis

Call B a solution if |S — AB|> < D J

Fori=1,...,e"R, define

1 if (i) is a solution ,
U= :
0 otherwise.

The number of solutions X is

X:U]_++UenR

Want to show P(X >0) - 1 as n— o ]

Notice that the U;'s are dependent!

10/ 42



Dependent Codewords

@ Each codeword sum of L columns

e Codewords /3(i), (/) dependent if they have common columns

7 TOWS

. -
Section 1 Section 2 Section L
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Dependent Codewords

@ Each codeword sum of L columns

e Codewords /3(i), (/) dependent if they have common columns

Section L

7 TOWS

The number of codewords sharing r common terms with any 5(/) is

L
< )(M—l)L—f, r=0,1,...,L
r

# codewords dependent with S(i) = Mt —1 — (M — 1)t

)

11/42



The Second Moment Method (2nd MoM)

X: U1++UenR
To show P(X > 0) w.h.p., we use the 2nd MoM:

EX)?
P(X >0) > EE{XZ]

Proof : (E[XY])? < E[X?]E[Y?] with ¥ = 1{x50y.

12 /42



The Second Moment Method (2nd MoM)

X: U1++UenR
To show P(X > 0) w.h.p., we use the 2nd MoM:

EX)?2
P(X >0) > EE{Xg]

Proof : (E[XY])? < E[X?]E[Y?] with ¥ = 1{x50y.
The expected number of solutions is

EX = e™P(Uy =1) = "R~ 3l8%)

EX — oo if R> Llog %, butis X >0 w.h.p. ?

12 /42



The Second Moment

E[X?] = B[ (U1 + ... + Ugr)? |

=" Z <L>(M — DETE[ULUy | By, B2 share r terms ]
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The Second Moment

E[X?] =E[ (U1 + ...+ U.r)?]

L
=" Z <L>(M - 1)L_rE[U1 Uz | B1, B2 share r terms |

The key ratio is

2
gz[ig] (0‘2>

L -1
Z ( > T E[U1Uz | B1, B2 share r terms]

r=0

can compute Chernoff bound
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The Second Moment

EX?] = E[ (Us + ... + Upr)? ]

L
=" Z <L>(M — DETE[ULUy | By, B2 share r terms ]

The key ratio is

2
ey * ()

L -1
Z ( > ~"E[U1Us | p1, B2 share r terms]]

r=0 can compute Chernoff bound

P(X = 0) < L*%(b*bmin)(l?f(lfn%))

We've shown that rates R > max {(1 - U%), 1log %} are achievablﬁ

13 /42



What we have shown

Plot of max {(1 -

3.5

25+

0.5

0.5 log 62/D
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Key Question: For

D
(0.203) < = < 1

o2

- Is the SPARC inherently a suboptimal code?

- Or, is it a shortcoming of the proof technique?

15 /42



Why does the 2nd MoM fail 7

E[X?| =E[ (Ur + ...+ Usmr)? | = EIX]E[X|U; = 1]

Hence
(EX)> _  E[X]

E[X2]  E[X|U; =1]

P(X >0) >

16 /42
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Why does the 2nd MoM fail 7

E[X?| =E[ (Ur + ...+ Usmr)? | = EIX]E[X|U; = 1]
Hence
(EX)> _  E[X]

PX>0) = g5 = Exu, =1

We want E[X| (1) is a solution] ~ E[X]
But when %Iog% < R < (1—0%)

E[X]| 8(1) is a solution]
E[X]

@ The expected number of solutions given that we have one
solution blows up!

@ Similar phenomenon in random hypergraph 2-colouring
[Coja-Oghlan, Zdeborova '12]

42



Q: Why is E[X| 5(1) is a solution] > E[X]? |

@ There are many codewords (i) that are dependent with (1)

e If 3(1),3(i) are dependent: given that |S — AB(1)|?> < D,
the probability of |S — AB(i)|?> < D increases

n TOWS

. -—
Section 1 Section 2 Section L

17 /42



Q: Why is E[X| 5(1) is a solution] > E[X]? |

@ There are many codewords (i) that are dependent with (1)

e If 3(1),3(i) are dependent: given that |S — AB(1)|?> < D,
the probability of |S — AB(i)|?> < D increases

n TOWS

. -—
Section 1 Section 2 Section L

@ Even a small increase in the probability may be enough to
blow up E[X|8(1) is a solution]

17 /42



A Stylized Example

Assume that the number of solutions X can only take one of two
values

X — 2" with probability 1 — 27"
T | 2" with probability 27"

Note:
@ There are always at least 2" solutions = P(X >0) =1

18 /42



A Stylized Example

Assume that the number of solutions X can only take one of two
values

X — { 2" with probability 1 — 27"
2117 with probability 277
Note:
@ There are always at least 2" solutions = P(X >0) =1
@ The expected number of solutions is

EX = 2L1m=np 4 2n(1 —271P)
~2" ifp>0.1
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A Stylized Example

Assume that the number of solutions X can only take one of two
values

X — { 2" with probability 1 — 27"
2117 with probability 277
Note:
@ There are always at least 2" solutions = P(X >0) =1
@ The expected number of solutions is

EX = 2L1m=np 4 2n(1 —271P)
~2" ifp>0.1
@ For 2nd MoM to predict existence of solutions, we need

E[X] -
E[X|3 is a solution] ~

18 /42



Example ctd.

E[X]| B is a solution]
= P(X =2%"Bis a soln.) 211" 4+ P(X =2"|3 is a soln.) 2"
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Example ctd.

E[X]| B is a solution]
= P(X =2%"Bis a soln.) 211" 4+ P(X =2"|3 is a soln.) 2"

21.1n 2—np on

~ 1.1n + n
~ on 21.1nD—np on 4 21.1n9—np
————
~ 2—n(p—-1) ~ 1-2—n(p—1)
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Example ctd.

E[X]| B is a solution]

= P(X =278 is a soln.) 211" 4 P(X = 2"|8 is a soln.) 2"

1.1n »—
N 22" ot 2" on
~ on 4 21.1n9—np on 4 21.1n9—np

~ 2::(;7*-1) ~ 1-2—-n(p—1)

E[X| 8 is a solution] =~ 21-272="P 4 2n

2 if p>0.2
T 2t2P if01<p<0.2
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Example ctd.

E[X]| B is a solution]

= P(X =217 is a soln.) 211" 4 P(X = 2"|8 is a soln.) 2"

1.1n »—
N 22" ot 2" on
~ on 4 21.1n9—np on 4 21.1n9—np

~ 2::(;7*-1) ~ 1-2—-n(p—1)

E[X| 8 is a solution] =~ 21-272="P 4 2n

2 if p>0.2
T 2t2P if01<p<0.2

When 0.1 < p < 0.2, the 2nd MoM fails because:
o Conditioned on 3 being a soln., probability of X = 2%17 ¢

e E[X| B is a solution] > EX although
X| B is a solution ~ EX w.h.p

19 /42



Back to SPARCs

For a low-probability set of design matrices:

@ Columns of 3 are unusually well-aligned with S

@ = lots of neighbours of a solution are also solutions.

@ Due to these atypical matrices,
E[X| 3 is a solution] > E[X]

20 /42



Back to SPARCs

For a low-probability set of design matrices:
@ Columns of 3 are unusually well-aligned with S
@ = lots of neighbours of a solution are also solutions.
@ Due to these atypical matrices,
E[X| 3 is a solution] > E[X]

Lemma

Given that (3 is a solution, the number of neighbours of 3 that are
also solutions is less than L=Y/2E[X] with prob. at least 1 — L~2,
when b > b*

The lemma implies

X | is a solution ~ E[X] with prob. at least 1 — L2

20 /42



Fixing the 2nd MoM

Call a solution § good if fewer than L~'/2E[X] of its neighbours
are also solutions

@ Lemma says w.h.p any solution § is good.
Xgood: Vi+Wo+...+ VenR
where

1 if 5(i) is a good solution ,
Vi = -
0 otherwise.

21 /42



Fixing the 2nd MoM

are also solutions

Call a solution § good if fewer than L~'/2E[X] of its neighbours J

@ Lemma says w.h.p any solution § is good.
Xgood: Vi+Wo+...+ VenR
where

1 if 5(i) is a good solution ,
Vi = -
0 otherwise.

@ Apply 2nd MoM to show that X, > 0 w.h.p.

This works because E[Xgooq|0 is a solution] ~ EXgooq ~ EX

21 /42



Summary

@ To show X > 0, 2nd MoM method requires E[X|5] ~ EX
@ This may not hold although X|5 ~ E[X] w.h.p J
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Summary

@ To show X > 0, 2nd MoM method requires E[X|5] ~ EX
@ This may not hold although X|5 ~ E[X] w.h.p

Two-step fix
@ Show that most solutions are good, i.e., not many neighbours
are solutions

@ Apply 2nd MoM to count the good solutions
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Summary

@ To show X > 0, 2nd MoM method requires E[X|3] ~ EX
@ This may not hold although X|5 ~ E[X] w.h.p

Two-step fix

@ Show that most solutions are good, i.e., not many neighbours
are solutions

@ Apply 2nd MoM to count the good solutions

@ Similar situation in random hypergraph 2-colouring
[Coja-Oghlan, Zdeberova SODA '12 |

@ Step 1 is key, and is problem-specific; Step 2 generic

@ This two-step recipe potentially useful in many problems



So far ...

Section 1 Section 2

p ; Section L
L’ columns L° columns L' columns
A:
n rows
i I I T
B0, 0t 0,0, ¢,0, 0]

Pn=P( 3IS—AB|*> D)

For any ergodic source with variance o2 and distortion D < o2,

P, — 0 for all rates R > %Iog %2, when b > bpyin
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So far ...

Section 1 Section 2

" p Section L
L” columns L° columns LY columns
) | ;
I I |
A:
n rows
. 0.c. ! . \ \ T
ﬁ~ 07 5y Gy 1 07('7 07 | | (7707 70—‘

P,=P(L1|S—AB|?> D)

For any ergodic source with variance o2 and distortion D < o2,
2
P, — 0 for all rates R > %Iog 5. when b > by

@ We would also like to know the error exponent:
T = —limsup,, % logP, = P, S e "l

@ The 2nd MoM only gives a polynomial decay of P, in n

23 /42



Refined Error Analysis for SPARC

S ~ iid. N(0,07)
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Refined Error Analysis for SPARC

S ~ iid. N(0,0%)

A R:llogai

2 D

P, < P(]S\2 > 32) + P( error | ]5]2 < 32)
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Refined Error Analysis for SPARC

S ~ iid. N(0,0%)

P, < P(|S\2 > a2) + P( error | ]5]2 < 32)

o The first term < exp(—nD(a? || 02))
o D(a° || 02): KL divergence between N(0, a?) and N(0, 02)

24 /42



Error Analysis

P, < P(IS|*> > a®) + P(error ||S|* < a?).

/

N~

KL divergence ?

P(error ||S|?<a®) =P (X=0]]S|* < a*)

where X = Zi’i U; and

1 if B(i) is a solution ,
Ui = .
0 otherwise.



Error Analysis

P, < P(IS|*> > a®) + P(error ||S|* < a?).

/

N~

KL divergence ?

P(error ||S|?<a®) =P (X=0]]S|* < a*)

where X = Zi’i U; and

1 if B(i) is a solution ,
Ui = .
0 otherwise.



Error Analysis

Po < PSI* > &%) + P(error | ISP < ).

/

N~

KL divergence ?

P(error |[S]* < a®) =P (X =0]IS]* <)

where X = Zi’i U: and
U; = { 1 if B(i) is a solution ,

0 otherwise.

We get a sharp bound on P (X =0 | [S|?> < a?) using
Suen'’s inequality

25 /42



Dependency Graph

For random variables {U;}icz, any graph with vertex set Z s.t:

If A and B are two disjoint subsets of T such that there
are no edges with one vertex in A and the other in B,
then the families {U;}ica and {U;};cp are independent.

26 /42



For our problem . ..
Ui = 1 if (i) is a solution , i1 gnR
0 otherwise.

For the family {U;},
{i ~j:i#jand (i), (j) share at least one common term}

is a dependency graph.

27 /42



Suen's correlation inequality
Let {U;}iez, be Bernoulli rvs with dependency graph I'. Then

A A%
- < —mi M
P(;U, O) _exp< mm{2’8A’65}>

A=) EU,

i€l

where

A= %ZZE(U,-UJ-),

i€T jni

0= rpeazxkz:iEUk.

28 /42



Bounding the error

enR
P, < P(IS]* > &%) + P(Z Ui=0]|S]? < az)

i=1

A AN
<exp (—nD(a® || 0%)) + exp (— min {5, 5 8_A})

29 /42



Bounding the error

enR
P, < P(IS]* > a%) + P(Z Ui=0]S|? < 32)
i=1

< _ 2 2 — 1 -
exp ( nD(a H ag )) + exp < min { 27 65, 8 })

where for sufficiently large n

22 2
rs e (Fhsbme) - A e X Gba--0/)R)

4]

@ For large n, the first KL divergence term dominates P,
o\, %, )‘KQ all grow polynomially in n for b > b*
= second term decays super-exponentially

o Need to use refinement technique when R < (1 — D/a?)

29 /42



Error Exponent of SPARC with Min-Distance Encoding

P,=P(1|S—AB|?> D)

Theorem (RV,Joseph,Tatikonda '12, '14)
Q For R> % log %, the probability of error P,, decays
exponentially in n for b > b*

@ The error-exponent D(a° || 02), with a®> = De?R, is optimal
for Gaussian sources with squared-error distortion.

30/42



Error Exponent of SPARC with Min-Distance Encoding

P,=P(1|S—AB|?> D)

Theorem (RV,Joseph,Tatikonda '12, '14)
Q For R> % log %, the probability of error P,, decays
exponentially in n for b > b*

@ The error-exponent D(a° || 02), with a®> = De?R, is optimal
for Gaussian sources with squared-error distortion.

@ This result shows that SPARCs are structurally good codes

@ But minimum-distance encoding is infeasible — what about
practical algorithms?

30 /42



SPARC Construction

Section 1 Section 2 Section
< M columns M columns N leébllii;ns

7 TOWS

—1 Y

| | 7T

5: [0, 0,c1,0 0,¢,0, ver, 0, ,0

Main Idea: Vary the coefficients across sections

31/42



SPARC Construction

Section 1 Section 2 Section L

< M columns M columns _ M columns
[ | | ! T
A: | | |
! ! ! n TOWS
L . ! ! |y
| I I 7T
ﬁ: [07 O,C],: O’ 02705 | | CLa()? 70
Main Idea: Vary the coefficients across sections J
As before:

@ For rate R codebook, need ML = e’

31/42



SPARC Construction

Section 1 Section 2 Section
< M columns M columns A Jeébllgins

[ | Vl ! ] 4
A: | | |
| | ! n TOWS
L : ! } s
| | | T
ﬁ: [07 Oaclﬂ O» 02707 | | CLvoa 70
Main Idea: Vary the coefficients across sections
As before:

@ For rate R codebook, need ML = e’

@ Choose M polynomial of n = L ~ n/logn

31/42



An Encoding Algorithm

M columns
B | | ! ]
A: Section 1 3 3 3 " Tows
L 1 : 1y
| | | 7T
6: [0, 07 C1y! i |
Step 1: Choose column in Sec.1 that minimizes ||S — c1A;||?
- ¢ =+/2Ro?/L

32/42



An Encoding Algorithm

M columns

A: Section 1 | | 3

L ! . ! 1y

B: [0, 0,c1,: | |

Step 1: Choose column in Sec.1 that minimizes ||S — c1A;||?

- = \/2Ro?/L
- Max among inner products (S, A;)

- Residue Ry =S — 1A

n TOWS

32 /42



An Encoding Algorithm

M columns

A: 3 Section 2 3 3

B: [ 0, 9,0,

Step 2: Choose column in Sec.2 that minimizes |[R; — & A;

o= B A-P)

- Max among inner products (Ry, Aj)

- Residue R, = Ry — C2A2

n TOWS

12

32

42



An Encoding Algorithm

M columns

Section L
n Tows

I

| T

B | | 1,0, 0

Step L: Choose column in Sec.L that minimizes ||R;_1 — ¢/ A;]|?

o =B (1-2R)

- Max among inner products (R;_1,Aj)

- Residue R[_ = RL—l — CLAL

B2 /42



Performance

Theorem (RV, Sarkar, Tatikonda '13)

For an ergodic source S with mean 0 and variance o2, the

encoding algorithm produces a codeword AB that satisfies the
following for sufficiently large M, L.

P(Is—ABE > o2 4 ) <o~ nn (A~ HEEEM))

Deviation A is O(w)

log n

33 /42



Performance

Theorem (RV, Sarkar, Tatikonda '13)

For an ergodic source S with mean 0 and variance o2, the
encoding algorithm produces a codeword A( that satisfies the
following for sufficiently large M, L.

P(IS—AB2 > 0?4+ A ) < exp( — kn (A - <5ESEM))

v

Deviation A is O('°&1%6 )

logn

Encoding Complexity
ML inner products and comparisons = polynomial in n J

33 /42



Simulation

Distortion

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 0.5 1 1.5 2 25 3 3.5 4 4.5 5

Gaussian source: Mean 0, Variance 1

Parameters: M=L%, Le[30,100]

Shannon limit

Rate (bits/sample)
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Why does the algorithm work?

M columns

A: Section 1 n TOWS
ﬁi [0, 0) Clvi 3 3 —‘T
Each section is a code of rate R/L (L ~ |og,,) J

@ Stepl: S — R1:S—C1A1

2R
IRy |? ~ o%e 2R/t » (1—L> for c1 = \/2Ro?/L

35/42



Why does the algorithm work?

M columns

A 3 Section 2 i n Tows
62 [ 307 C2, 07 3 3 }T
Each section is a code of rate R/L (L ~ |Og,,) J

@ Stepl: S — R1:S—C1A1

2R
IRy |? ~ g%e 2R/t x o2 (1 - L) for ¢ = y/2Ro?/L

@ Step 2: ‘Source’ Ry — Ry =R; — 0A, 35/ 42



Why does the algorithm work?

M columns

| |
| |

A ! ' Section 7
| |

B 1 o 0,60

Each section is a code of rate R/L (L

}T

~ Iogn)

n TOws

o Step i: ‘Source’ Ri_1 — R;=Rj_1 — A,

With 2 = 2B% (1 — 2R)7~1,

2R 2R\’
RI2~IR_?(1-"2)~o? 122

35 /42



Why does the algorithm work?

M columns

— R T E—
| 4
A 3 3 3 Section L
— ' : ! v
. | T
/8' [ | | L CL,y 07 ) 0

Each section is a code of rate R/L (L ~ 52)

n TOWS

2R\ "
Final Distortion: |R;|? ~ o2 (1 — T) < o2 2R

L-stage successive refinement L ~ n/logn




Successive Refinement Interpretation

M columns

A: 3 3 Section 7 .
| | n rows
| | , | T
ﬁ: l i i 07 Ci, 0: }
@ The encoder successively refines the source over ~ |ogn stages

@ The deviations in each stage can be significant!

2R\’
Ri|> = o <1— L> (1+4)% i=0,...,L
‘Typical Value’

@ KEY to result: Controlling the final deviation A,

36
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Proof involves controlling deviations due to:

e Source: |S|? = 0?(1+ Ap)?
e Dictionary columns:  |A;>=1+~;, 1<j<ML

o Computed value:

Ri_ .
max <|Rl||,Aj>:\/2logM(1+e,-), 1<i<lL
i-1

J
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SPARCs for Communicating over Gaussian Channels

Noise
X /l Z .
R
X2
Z = X + Noise IX]1% < P, Noise ~ N (0, N)

n

GOAL: Achieve rates close to capacity C = % log (1 + %)

J
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Efficient Decoder

Section 1 Section 2

Section L
M columns M columns )\,[eéo]lalrlnns
A:
n rows
\ | , T
B0, Oenl 0,00, | Le,0, 0]
Z = A3 + Noise

e Each §8 corresponds to a message = ML messages

e Efficient decoders proposed by [Barron-Joseph '12],
[Barron-Cho '13]:

Achieve rates R < C — O("’Ii'g&,w’v’) with P, < e—¢L(C=R)?
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Multi-terminal networks

Examples:

Multiple-access Broadcast

Key ingredients

@ Superposition (Multiple-access, Broadcast)

@ Random binning (e.g., distributed compression,
source/channel coding with side-information)
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Binning with SPARCs

M
A: Sect?on 1 3 3 3 3 3 | Secﬁ:ion Li
M columns M columns M columns
T
5: {0, 0, c1, ,Co, 0, cr, 0, ,0}

[RV-Tatikonda, Allerton '12]

Any random coding scheme that consists of point-to-point source
and channel codes combined via binning/superposition can be
implemented with SPARCs.
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Summary

Sparse Regression Codes

@ Rate-optimal for Gaussian compression and communication

@ Low-complexity coding algorithms that provably attain
Shannon limits

Future Directions
@ Better channel decoders and source encoders:

Approximate message passing, £1 minimization etc.?
o Simplified design matrices

Can we prove that the results hold for +1 design matrices

@ Network information theory: Multiple descriptions,
Interference channels . ..

@ Finite-field analogues: binary SPARCs?

Papers at http://www2.eng.cam.ac.uk/~rv285/pub.html



