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• Birds eye view on hypothesis testing 

• Recent history of the distribution free results 

• Elementary probability 

• Data perturbation methods 
– Symmetric noise distributions 

– Exchangeable noise distributions 

• Hypothesis testing with mild assumptions: 
– The noise can be expressed 

– The noise distribution is invariant under 
transformations from a finite symmetry group 
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Birds eye view on hypothesis testing 

• Measurement data generated as 
𝑦𝑘 = 𝜃0 + 𝑛𝑘 

• Assume that 𝑛𝑘 is N(0, 𝜎2) 

• Model under test 𝜃 

• The goal is to accept or reject the hypothesis 

 
“H0: 𝜃 = 𝜃0” 
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Birds eye view on hypothesis testing 

• Create statistic 𝑂(𝑌, 𝜃), with known distribution 

• Select a subset 𝐶 of the possible outcomes of 𝑂 
where 𝐻0 is accepted 

• Let 𝐶𝜃 = 𝜃:𝑂 𝑌, 𝜃 ∈ 𝐶  be the set of accepted 
models 

• Requirements 
– If𝜃 = 𝜃0 then 𝐻0 is accepted with given probability 𝛼. 

– If𝜃 ≠ 𝜃0 then 𝐻0 is rejected with a probability 
depending on how ≠ they are. 

– 𝐶𝜃 should have “nice” properties. 
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Birds eye view on hypothesis testing 

One way to do it (the usual way): 

• 𝑂 𝑌, 𝜃 =
 𝑦𝑘−𝜃𝑛

𝑘=1

𝑛𝜎2
∼ N(0, 𝜎2) 

• 𝐶 = Φ−1 1−𝛼

2
, Φ−1 1+𝛼

2
 

• 𝐶𝜃 =
 𝑦𝑘

𝑛
−

𝜎

𝑛
 Φ−1 1+𝛼

2
,
 𝑦𝑘

𝑛
−

𝜎

𝑛
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2
 



6/44 

Birds eye view on hypothesis testing 
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Birds eye view on hypothesis testing 
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Birds eye view on hypothesis testing 

Another way to do it (the unusual way): 

• 𝑂 𝑌, 𝜃 ∼ Pr 𝑂 = 1 = 𝛼 = 1 − Pr (𝑂 = 0) 

• 𝐶 = 1  

• 𝐶𝜃 = 1 𝑂 = 1 −∞,∞ + 1 𝑂 = 0 ∅ 
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Birds eye view on hypothesis testing 
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Birds eye view on hypothesis testing 
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Birds eye view on hypothesis testing 

The usual way:  
• Detailed assumptions 

(model structure, 
distributions) 

• Deterministic/repeatable 
decisions (based on 
observations) 

• Central limit theorem + 
asymptotic theory for 
the distribution of 
estimates 

The unusual way: 
• No assumptions 
• Totally unrepeatable 

decisions 
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Birds eye view on hypothesis testing 

The usual way:  
• Detailed assumptions 

(model structure, 
distributions) 

• Deterministic/repeatable 
decisions (based on 
observations) 

• Central limit theorem + 
asymptotic theory for 
the distribution of 
estimates 

The unusual way: 
• No assumptions 
• Totally unrepeatable 

decisions 

It would be nice to meet 
in the middle! 
 
• Our assumptions are 

almost never true 
• A little bit of 

coherence in the 
decisions is desirable 

• We aim for exact 
confidence levels for 
finite sample count 
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Distribution free methods 

• The idea was introduced around 2005 

• Names: Marco Camp, Balázs Csanád  Csáji, Eric Weyer 

• Buzz words: LSCR (leave-out sign-dominant correlation 
regions), SPS (sign-perturbed sums) 

• My work: 
–  a general framework for distribution free methods (data perturbation 

methods) 

– SPS is a (meaningful) data perturbation method for linear regression 
problems with jointly symmetric noise distribution  

– a (meaningful) data perturbation method for linear regression 
problems with exchangeable noise distribution 
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Probability basics 

• Randomly well defined ordering: 
Let 𝜋 be a uniformly chosen random 
permutation of {1, … ,𝑚}. 
The well defined ordering by 𝜋 of a sequence 
Z1, … , 𝑍𝑚 is 𝑂𝜋(𝑍) = [𝑖1, … , 𝑖𝑚] if 

𝑍𝑖1 >𝜋 𝑍𝑖2 >𝜋 ⋯ >𝜋 𝑍𝑖𝑚  

• ∀ 𝜋 ∶ 𝑍𝑖 < 𝑍𝑗 ⇒ 𝑍𝑖 <𝜋 𝑍𝑗  

• 𝑍𝑖 = 𝑍𝑗 ⇒ 𝑍𝑖 <𝜋 𝑍𝑗  if 𝑖 precedes 𝑗 in 𝜋 
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Probability basics 

•  Almost true: Independent and identically distributed 
random variables are uniformly ordered. 

• If 𝑍1, … , 𝑍𝑚 is an i.i.d. sequence of random 
variables and 𝜋 is a uniformly chosen random 
permutation then 𝑂𝜋(𝑍) is a uniform random 
permutation 

Pr 𝑂𝜋 𝑍 = 𝑖1, … , 𝑖𝑚 =
1

𝑚!
 

• Proof by symmetry arguments. 
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Probability basics 

• Let G(𝐺,⋅) be a finite group, 
𝑋1 = 1, 𝑋𝑖≥2 ∼ 𝑈𝑛𝑖 𝐺 , 𝑋0 ∼ 𝑈𝑛𝑖 𝐺  , 
jointly independent. 

• If 𝑋 𝑖≥1 = 𝑋𝑖 ⋅ 𝑋0 then then 𝑋 𝑖≥1are jointly 
independent and uniformly distributed over 
𝐺. 

• Proof by straight forward calculation. 
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Probability basics 

Groups that will be used 

• Sign vectors of length 𝑛 :  
𝐺 = −1,1 𝑛 
𝑥1 ⋅ 𝑥2 𝑘 = 𝑥1 𝑘 𝑥2 𝑘  

• The symmetric group 𝑆𝑛 (group of 
permutations): 

𝑥1 = 3 1 2 , 𝑥2 = 1 3 2  
𝑥1 ⋅ 𝑥2 = (2 3 1) 
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Perturbed dataset methods 

• Let the measurements come from a model 
𝑌 = 𝑓 𝜃0, 𝑋, 𝑁  

• 𝑓 is a known model structure 

• 𝑋 contains the known input values 

• 𝑁 contains disturbing unknown noise 

• 𝜃0 ∈ 𝑅𝑛𝜃 is the parameter vector 
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Perturbed dataset methods 

• Invertibility with respect to noise is required 

∃𝑓∗: Θ ×X×Y→N 
𝑌 = 𝑓 𝜃, 𝑋, 𝑁 ⇒ 𝑁 = 𝑓∗(𝜃, 𝑋, 𝑌) 

• When it is obvious from context 
𝑁 𝜃 = 𝑓∗ (𝜃, 𝑋, 𝑌) 

• The notation 𝐷 will be used to denote all 
available data (𝑋 and 𝑌 usually) 
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Perturbed dataset methods 

• The goal is create a hypothesis test for the 
parameter vector 𝜃 without exact knowledge 
about the distribution of the noise vector 𝑁. 

• Some structural symmetry assumptions about 
the joint distribution of 𝑁 is required. 

• The confidence level can be (almost) arbitrarily 

selected as 𝛼 =
𝑘

𝑚!
. 

• A random data perturbation setup Γ is 
required beside the measurements. 



21/44 

Perturbed dataset methods 

• Testing 𝜃 on confidence level 𝛼 = 𝑘
𝑚!  : 

1. Generate 𝑚 perturbed datasets 𝐷 𝑖 (𝐷, 𝜃) based 
on Γ 

2. Define a performance measure 𝑍:D× Θ → 𝑅 

𝑍𝑖 = 𝑍 𝐷 𝑖 𝐷, 𝜃 , 𝜃  

3. Create a well defined ordering 𝑂Γ 𝑍  

4. Select 𝑘 out of the possible 𝑚! permutations 
where 𝐻0: 𝜃 = 𝜃0 is considered accepted 

• If 𝜃 = 𝜃0 then 𝑍𝑖  should be i.i.d. 
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Generating perturbed datasets 

• Given 𝑋, 𝑌 and 𝜃 

• Calculate the corresponding noise sequence 
𝑁 𝜃 = 𝑓∗ (𝜃, 𝑋, 𝑌) 

• If 𝜃 = 𝜃0 then 𝑁 𝜃  = 𝑁 

• Create 𝑚 perturbed noise realization 

𝑁 𝑖 𝜃, Γ = 𝑃𝑖𝑁 𝜃  

• If 𝜃 = 𝜃0 then 𝑁 𝑖 𝜃, Γ  are equally likely nose 
vectors if the perturbations leaves the noise 
distribution invariant 
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Generating perturbed datasets 

• Create 𝑚 perturbed noise realization 

𝑁 𝑖 𝜃, Γ = 𝑃𝑖𝑁 𝜃  

• Create 𝑚 perturbed measurements  

𝑌(𝑖) = 𝑓 𝜃, 𝑋, 𝑁 𝑖  

• If 𝜃 = 𝜃0 then 𝑌 𝑖  are equally likely observations 
(proof later) 

• Γ contains 𝑚 − 1  random perturbation objects 

• 𝑃1 = 𝐼, 𝑌(1) = 𝑌 
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Performance measures 

• Given the 𝑚 equally likely datasets 𝐷 𝑖 (𝐷, 𝜃)  
• Usual least squares measure 

 Zi = 𝐽𝜃
(𝑖)

𝜃 =
1

𝑛
 𝑓∗ 𝜃, 𝑋, 𝑌(𝑖) 𝑘

2
=𝑛

𝑘=1
1

𝑛
||𝑁(𝑖) 𝜃 ||2 

• Sensible measures don’t make sense 
– Noise sequences are equivalent up to measure 

invariant perturbations 
– Sensible performance measures don’t differentiate 

between measure invariant points 

• Something more sophisticated is needed (see 
later in concrete case) 

• If 𝜃 = 𝜃0 then the values 𝑍𝑖 are i.i.d. 
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Creation of the ordering 

• Given 𝑍𝑖 and a uniformly chosen random 
permutation 𝜋 

• 𝑂 = 𝑂𝜋(𝑍) 

• If 𝜃 = 𝜃0 then the values 𝑍𝑖 are i.i.d. and 𝑂 is a 
uniformly distributed random permutation 

• Only knowledge about invariant transformations 
of the noise distribution are needed 

• Select 𝑘 of the 𝑚! outcomes of 𝑂 where 
𝐻0: 𝜃 = 𝜃0 is considered accepted 
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Perturbed dataset – “proof” 

Γ = (𝜋, [𝐼, 𝑃2, … , 𝑃𝑚]) 

𝑃0 

{𝑒1, … , 𝑒𝑛} 
𝑁 = "𝑃0𝐸" 𝑌 = 𝑓(𝜃0, 𝑋, 𝑁) 

𝑁 𝜃 = 𝑓∗(𝜃, 𝑋, 𝑌) (𝑁 𝜃 = 𝑁) 

𝐼𝑁  𝑃2𝑁  𝑃𝑚𝑁  ⋯ 

"𝐼𝑃0𝐸 " "𝑃2𝑃0𝐸 " "𝑃𝑚𝑃0𝐸 " ⋯ (i.i.d) wrto 

𝑌(1) 𝑌(2) 𝑌(𝑚) ⋯ 

𝑍1 𝑍2 𝑍𝑚 ⋯ (i.i.d) 

𝑂𝜋(𝑍) (i.i.d) 

𝑍𝑖 = 𝑍 𝜃, 𝑋, 𝑌 𝑖  

a 

- fancy coin toss - 
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Linear regression 

𝑌 = 𝑋𝑇𝜃0 + 𝑁 

• 𝑌 ∈ 𝑅𝑛, 𝑋 ∈ 𝑅𝑛𝜃×𝑛 - measured, known 

• 𝑁 ∈ 𝑅𝑛- i.i.d. sequence 

– no symmetry required 

– no moment conditions required 

• Goal: create confidence regions for parameter 
vector 𝜃 
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Linear regression 

• If 𝑁 is an exchangeable sequence and 𝑃 is a 
permutation matrix then 𝑁 ≈ 𝑃𝑁 

• Composition of Γ 

– 𝑃1 = 𝐼, 𝑃𝑖≥2 ∼ 𝑈𝑛𝑖(𝑆𝑛) – uniform random 
permutations 

– 𝜋 uniform random permutation 

 

 
• Sorry for the abusive notation around permutations and matrices 



29/44 

Linear regression 

𝑍𝑖 𝜃, Γ =  
𝑌 − 𝑋𝑇𝜃 𝑇𝑃𝑖

𝑇𝑋𝑇 𝑋𝑋𝑇 −1𝑋𝑃𝑖 𝑌 − 𝑋𝑇𝜃  

• Select orderings such that 𝑍1 is as small as 
possible (1 is at the back of the permutation) 

• Corresponding confidence regions 

– Contain the least squares estimate 

– Connected 

– Bounded if the input is “exciting enough” 
• Proof later, first see a showcase 
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One dimensional showcase 
• 𝜃0 = 1, 𝑋 = [2,3, −4,−1], 𝑁 = 4.5, −20,−13,3 𝑇 

• Γ: 𝑃2 = (4,1,2,3), 𝑃3 = (2,1,4,3), 𝑃4 = (3,2,1,4) 

                        𝛼 =
18

4!
=

3

4
   (one realization) 



31/44 

Linear regression 

• The performance measure is the key 

• Perturbed data sets as separate estimation 
problems 

• 𝐽𝜃
(𝑖)

𝜃′ =
1

𝑛
𝑌 𝑖 − 𝑋𝑇𝜃′ 𝑇

𝑌 𝑖 − 𝑋𝑇𝜃′  

• 𝜃(𝑖) = 𝑋𝑋𝑇 −1𝑋𝑌(𝑖) - LS estimate 

• 𝑍𝑖 = 𝜃 𝑖 − 𝜃
𝑇

𝑋𝑋𝑇 𝜃 𝑖 − 𝜃  

• Natural weighting 

• 𝑍1
𝐿𝑆 = 0 
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Linear regression 

• 𝑍𝑖 = 

𝑌 − 𝑋𝑇𝜃0
𝑇𝑃𝑖

𝑇𝑋𝑇 𝑋𝑋𝑇 −1𝑋𝑃𝑖 𝑌 − 𝑋𝑇𝜃0  
+ 

2 𝑌 − 𝑋𝑇𝜃0
𝑇𝑃𝑖

𝑇𝑋𝑇 𝑋𝑋𝑇 −1𝑋𝑃𝑖𝑋
𝑇 𝜃0 − 𝜃  

+ 

𝜃0 − 𝜃 𝑇𝑋𝑃𝑖
𝑇𝑋𝑇 𝑋𝑋𝑇 −1𝑋𝑃𝑖𝑋

𝑇 𝜃0 − 𝜃  

 

• 𝑍1 − 𝑍𝑖 ≈ 𝑋𝑋𝑇 − 𝑋𝑃𝑖
𝑇𝑋𝑇 𝑋𝑋𝑇 −1𝑋𝑃𝑖𝑋

𝑇 
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Linear regression 

• 𝑍1 − 𝑍𝑖 ≈ 𝑋𝑋𝑇 − 𝑋𝑃𝑖
𝑇𝑋𝑇 𝑋𝑋𝑇 −1𝑋𝑃𝑖𝑋

𝑇 
= 

𝑋 𝐼 − 𝑃𝑖
𝑇𝑋𝑇 𝑋𝑃𝑖𝑃𝑖

𝑇𝑋𝑇 −1
𝑋𝑃𝑖 𝑋𝑇 

• 𝐼-projection + symmetric sandwich ⇒ 
pos.sem.def. 

• Input 𝑋 is sufficiently exciting with respect to 
permutation 𝑃 if 

𝑋𝑋𝑇 − 𝑋𝑃𝑇𝑋𝑇 𝑋𝑋𝑇 −1𝑋𝑃𝑋𝑇 > 0 
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Linear regression 

• Input 𝑋 is sufficiently exciting with respect to 
permutation 𝑃 if 

𝑄 = 𝑋𝑋𝑇 − 𝑋𝑃𝑇𝑋𝑇 𝑋𝑋𝑇 −1𝑋𝑃𝑋𝑇 > 0 

• Suff. exc.: |𝜃0 − 𝜃 | → ∞ ⇒ 𝑍1 − 𝑍0 → ∞ 
(power function tends to 1) 

• One dimensional constant input – not good 
enough – 𝑄 = 0 

• Complex problem is required for nontrivial 
results  
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Sign-perturbed sums 

• The method of sign-perturbed sums is also a data 
perturbation method. 

• SPS works with jointly symmetric noise 
distributions. 

• The matrices 𝑃𝑖 are not random permutation 
matrices but diagonal matrices with uniformly 
distributed random signs {−1,1}. 

• Similar properties for linear regression problems 
as presented for the i.i.d. case. 

• There are two different performance measures 𝑍 
resulting in nice confidence regions. 
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Price of information 
𝑦𝑘 = 𝑥𝑘𝜃0 + 𝑒𝑘, 𝑒𝑘 ∼N(0, 𝜎2) 
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Price of information 

• Minimum at zero 
because of symmetry  

• Loss of power is 
significant, but the distribution of 𝑒𝑘 is not 
used 

• Accurate definition of power function is an 
issue 
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Coherence of decisions 
𝑦𝑘 = 𝑥𝑘𝜃0 + 𝑒𝑘, 𝑒𝑘 ∼ 𝐸𝑥𝑝(5), 𝑛 = 25, 𝛼 = 0.75 

𝜃0 𝜃𝐿𝑆  
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Non linear problems 

• Confidence regions for parameters of linear 
dynamical systems 
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Non linear problems 

𝐷(𝑞)

𝐶(𝑞)
𝐴 𝑞 𝑦 𝑘 −

𝐵 𝑞

𝐹 𝑞
𝑢 𝑘 = 𝑒 𝑘  
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Non linear problems 

• Uncertainty evaluation 
is not trivial 

• Structural properties 
depend on problem and 
performance measure 

• Discovering the entire confidence region is 
hard 
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Open questions 

• The notion of power function is not defined 

• Limiting results are not yet proven 

• … 
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Summary 
• Hypothesis testing with mild assumptions: 

– The noise can be expressed 

– The noise distribution is invariant under 
transformations from a finite symmetry group 

• The result is random even for fixed 
observations but not “too random” 

• Nice structural results for linear regression 
problems 

• Thank you for your attention! 
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