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Stein’s Method for Normal Approximation

Stein (1972, 1986): Z ∼ N (0, 1) if and only if for all smooth functions f ,

EZf (Z ) = Ef ′(Z )

Roughly speaking, we deduce that for a random variable W with
EW = 0,VarW = 1, if

Ef ′(W )− EWf (W ) ≈ 0

for many functions f , then W ≈ Z in distribution.

Stein’s method gives a systematic way of quantifying this heuristic, using

|Ef ′(W )− EWf (W )|

as a precise measure of non-Gaussianity.



Stein’s method for Normal approximation

To do so take h a test function. Then solve for f the Stein equation

h(x)− Eh(Z ) = f ′(x)− xf (x).

The functions fh are well understood and have good properties.

Next consider a probability metric of the form

dH(W ,Z ) = sup
h∈H
|Eh(W )− Eh(Z )|

(such as the Kolmogorov metric, the Wasserstein metric, the total
variation distance,...).

Deduce

dH(W ,Z ) = sup
h∈H
|E [f ′h(W )−Wfh(W )]| . (1)



Stein’s method for the Gaussian

In other words, Stein’s method transforms the problem of bounding
distances between W and Z such as

TV (W ,Z ) = sup
A⊂R
|P(W ∈ A)− P(Z ∈ B)|

W(W ,Z ) = sup
h∈Lip(1)

|Eh(W )− Eh(Z )|

Kol(W ,Z ) = sup
z∈R
|P(W ≤ z)− P(Z ≤ z)|

into that of bounding the quantity

∆H(W ) = sup
h∈H
|E [f ′h(W )−Wfh(W )]| .

This is a good thing, because that quantity is remarkably amenable to
computations.



Version 1 : Comparing score functions

For W sufficiently regular we define its score as the random variable
ρW (W ) which satisfies

E [ρW (W )f (W )] = −Ef ′(W )

for all smooth f (if it exists). Clearly ρZ (Z ) = −Z .

From (1) we get

dH(W ,Z ) = sup
h∈H
|E [f ′h(W )−Wfh(W )]|

= sup
h∈H
|E [(ρW (W ) + W )fh(W )]|

≤ κHE |ρW (W ) + W |

with κH = ‖fh‖.

Sharp bounds on κH are known; properties of ρW (W ) are often good.



Version 1 : Comparing Score functions

The score function approach was introduced by Shimizu (1975) and Stein
(1986, Lesson 6). See also Ley and Swan (2013a, 2013b).

The quantity
Jst(W ) = E

[
(ρW (W ) + W )2

]
is the so-called Fisher information distance of W .

If W is a standardized sum then remarkably precise bounds on Jst(W )
(involving Poincaré constants) are due to Johnson and Barron (2004).

For instance they show that if W =
n∑

i=1

Xi/
√

n with Xi iid with variance 1

then

Jst(W ) ≤ 2R?

n
J(X )

for R? the restricted Poincaré constant of X . This, combined with
Stein’s method, provides rates of convergence of the correct order.



Version 1’ : Working on the score directly

Stein et al (2004) and Chatterjee and Shao (2012) choose a different
route : solving for f the Stein equation

h(x)− Eh(W ) = f ′(x) + ρW (x)f (x)

they deduce

dH(W ,Z ) = sup
h∈H
|E [f ′h(Z ) + ρW (Z )fh(Z )]| .

They work out the properties of fh in terms of those of ρW and apply a
technique known as exchangeable pairs to bound the rhs directly.

Such an approach of course also extends to non-Gaussian approximation
via

dH(W ,X ) = sup
h∈H
|E [f ′h(X ) + ρW (X )fh(X )]| ,

although many conditions on the laws of X and W are necessary in order
to get things to work out.



Version 2 : Comparing Stein kernels

For W sufficiently regular we define its Stein kernel as the random
variable τW (W ) which satisfies

E [τW (W )f ′(W )] = E[Wf (W )]

for all smooth f (if it exists). Clearly τZ (Z ) = 1.

From (1) we get

dH(W ,Z ) = sup
h∈H
|E [f ′h(W )−Wfh(W )]|

= sup
h∈H
|E [(τW (W )− 1)f ′h(W )]|

≤ λHE |τW (W )− 1|

with λH = ‖f ′h‖.

Sharp bounds on κH are known; properties of τW (W ) are often good.



Version 2 : Comparing Stein kernels

The Stein kernel approach was used e.g. in Stein (1986, Lesson 6),
Cacoullos et al. (1992) and Cacoullos, Papathanasiou and Utev (1994).

The quantity
S(X ) = E

[
(τX (X )− 1)2

]
,

is called the Stein discrepancy of X .

It can be shown e.g. that if W =
n∑

i=1

Xi/
√

n with Xi iid with variance 1

then

S(W ) ≤ S(X )

n
.

Within this literature a very important breakthrough is due to Nourdin
and Peccati (2009) who show that if X is “chaotic” with mean 0 and
variance 1 then

S(X ) = Var(τX (X )) ≤ C1E
[
X 4 − 3

]
,

hereby obtaining the famous fourth moment theorem.



Version 2’ : Working on the Stein factors

Döbler (2014) and Tudor and Kusuoka (2012, 2014) and several others
introduced the Stein equation

h(x)− Eh(W ) = τW (x)f ′(x)− xf (x).

Properties of the solutions fh are quite good and, using

dH(W ,Z ) = sup
h∈H
|E [τW (Z )f ′h(Z )− Zfh(Z )]| ,

yield good bounds.

Again this is not reserved to Gaussian approximation so that we get

dH(W ,X ) = sup
h∈H
|E [τW (X )f ′h(X )− Xfh(X )]|

and this yields good bounds in quite some generality.

See also Ledoux (2012) and Azmoodeh, Campese and Poly (2014) for
abstract extensions of the fourth moment theorem.



Version 3 : Working on the Stein operator

In many cases nothing much is known about either ρW (W ) or τW (W ) so
that neither of the previous approaches can be used.

Then one can always start from

dH(W ,Z ) = sup
h∈H
|E [f ′h(W )−Wfh(W )]|

and

apply Taylor expansion;

use exchangeable pairs;

use couplings;

use biasing mechanisms (zero or size biased);

be smart.



The i.i.d. example

Take X1, . . . ,Xn i.i.d. copies of X such that EX = 0,VarX = 1
n . Define

W =
n∑

i=1

Xi .

Put Wi = W − Xi =
∑

j 6=i Xj . Then

EWf (W ) =
∑
i

EXi f (W )

=
∑
i

EXi f (Wi ) +
∑
i

EX 2
i f ′(Wi ) + R

=
1

n

∑
i

Ef ′(Wi ) + R

So

Ef ′(W )− EWf (W ) =
1

n

n∑
i=1

E{f ′(W )− f ′(Wi )}+ R.



Theorem

It is known that for the sup-norm

||f ′|| ≤ 2||h′||

hence for any smooth h

|Eh(W )− Eh(Z )| ≤ ‖h′‖

(
2√
n

+
n∑

i=1

E|X 3
i |

)
.

Conclusion :

If Xi = O(n−
1
2 ) then the bound is of order O(n−

1
2 )

Nothing goes to infinity.

The proof extends to local dependence.

With couplings we can treat weak global dependence too.



Generalizing

Since 1972, Stein’s method for the Gaussian has generated hundreds of
papers.

Chen (1975) extends to Poisson target; this has also generated hundreds
of paper.

Outside these two important settings, the method is also available for

Exponential

Geometric

Gamma and χ2

Negative binomial

binomial

...

See e.g.

https://sites.google.com/site/yvikswan/about-stein-s-method

for a list of (70+) papers.



Stein’s method in general

For µ a target distribution, with support I:

1. Find a suitable operator A and a wide class of functions F(A) such
that X ∼ µ if and only if

EAf (X ) = 0

for all functions f ∈ F(A).

2. Let H(I) be a measure-determining class on I. For each h ∈ H find
a solution f = fh ∈ F(A) of

h(x)− Eh(X ) = Af (x),

where X ∼ µ. If the solution exists and if it is unique in F(A) then
we can write

f (x) = A−1(h(x)− Eh(X )).

Obtain good bounds on these functions f .



Comparison of distributions

3. Let X and Y have distributions µX and µY with Stein operators AX

and AY .

Suppose that F(AX ) ∩ F(AY ) 6= ∅ and choose H(I) such that all
solutions f of the Stein equation belong to this intersection.

Then

Eh(X )− Eh(Y ) = EAY f (X ) = EAY f (X )− EAX f (X )

and

sup
h∈H(I)

|Eh(X )− Eh(Y )| ≤ sup
f∈F(AX )∩F(AY )

|EAX f (X )− EAY f (X )|.

A general version of the method then boils down to : find a way to
bound the right hand side.



Stein’s method

The devil is in the detail : everything relies on discovering a good
operator A whose inverse yields good bounds.

How to choose the A? For any given target, there are infinitely many...

We still need a definition of these operators.
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Our set-up

Let (X ,B, µ) be a measure space.

Example : X = R.

Let X ? be the set of real-valued functions on X and take a linear
operator D : dom(D) ⊂ X ? → im(D) such that dom(D) \ {0} 6= ∅.

Example : Df = f ′.

Let D−1 : im(D)→ dom(D) be a linear operator which sends any
h = Df onto f . Then

D
(
D−1h

)
= h

for all h ∈ im(D) and, for f ∈ dom(D),

D−1 (Df )

is defined up to addition with an element of ker(D).

Example: D−1f =
∫

f (x)dx .



Our set-up

Assumption

There exists a linear operator D? : dom(D?) ⊂ X ? → im(D?) and a
constant l := lX ,D such that

D(f (x)g(x + l)) = g(x)Df (x) + f (x)D?g(x)

for all (f , g) ∈ dom(D)× dom(D?).

Example: D∗f = Df = f ′, l = 0 because (fg)′ = f ′g + fg ′

Under this assumption, D and D? are skew-adjoint in the sense that∫
X

gDfdµ = −
∫
X

fD?gdµ

for all (f , g) ∈ dom(D)× dom(D?) such that

gDf ∈ L1(µ) or fD?g ∈ L1(µ)∫
X D(f (·)g(·+ l))dµ = 0.

Example:
∫

fg ′ = −
∫

f ′g for all f , g such that
∫

(fg)′ = 0.



Example 2

Let µ be the counting measure on X = Z and take D = ∆+, the forward
difference operator. Then

D−1f (x) =
x−1∑
k=•

f (k).

Also we have the discrete product rule

∆+(f (x)g(x − 1)) = g(x)∆+f (x) + f (x)∆−g(x)

for all f , g ∈ Z? and all x ∈ Z.

Hence our assumption is satisfied with D? = ∆−, the backward
difference operator and l = −1.



Example 3

Let µ(x) be the N (0, 1) measure on R, with density ϕ, and take

Dϕf (x) = f ′(x)− xf (x) =
(f (x)ϕ(x))′

ϕ(x)
.

Then

D−1ϕ f (x) =
1

ϕ(x)

∫ x

•
f (y)ϕ(y)dy .

Also we have the product rule

Dϕ(gf )(x) = (gf )′(x)− xg(x)f (x) = g(x)Dϕf (x) + f (x)g ′(x).

Hence our assumption is satisfied with D?g = g ′ and l = 0.



Example 4

Let µ(x) be the Poisson(λ)measure on Z+ with pmf γλ and

∆+
λ f (x) = λf (x + 1)− xf (x) =

∆+(f (x)xγλ(x))

γλ(x)
.

Then

(∆+
λ )−1f (x) =

1

xγλ(x)

x−1∑
k=•

f (k)γλ(k)

(which is ill-defined at x = 0) and

∆+
λ (g(x − 1)f (x)) = g(x)∆+

λ f (x) + f (x)x∆−g(x).

Hence our assumption is satisfied with D?g(x) = x∆−g(x) and l = −1.



Remark

In all examples the choice of D is, in a sense, arbitrary and other options
are available.

Less conventional choices of D can be envisaged (even forward
differences in the continuous setting, non standard derivatives etc.).

In principle no restriction on dimensions is necessary (more on this at the
end of the talk).

From now on for the sake of presentation we mainly concentrate on the
Lebesgue measure and D the usual derivative, i.e.

D∗f = Df = f ′; D−1f =
∫

f (x)dx .



A canonical Stein operator

Let X be a continuous random variable having pdf p with interval
support I ⊂ R.

Definition

The Stein class of X is the class F(X ) of functions f : R→ R such that

fp is differentiable on R
(fp)′ is integrable and

∫
(fp)′ = 0.

Definition

To X we associate the Stein operator TX of X such that

TX f =
(fp)′

p

with the convention that TX f = 0 outside of I.

Example: for p = φ the standard normal pdf,

TX f (x) =
(f (x)φ(x))′

φ(x)
= f ′(x) +

φ′(x)

φ(x)
f (x) = f ′(x)− xf (x)



A useful relationship

If X and Y have the same support then

Y
D
= X if and only if (TY ,F(Y )) = (TX ,F(X ));

see Ley and Swan (2013) for more details.

Moreover, for all f ∈ F(X ),

E [g ′(X )f (X )] =

∫
g ′(x)f (x)p(x)dx

= −
∫

g(x)
(fp)′(x)

p(x)
p(x)dx

= −E [g(X )TX f (X )]

for all differentiable functions g such that∫
(gfp)′dx = 0, and∫
|g ′fp|dx <∞.

We collect all such g in a class dom((·)′ ,X , f ).



Stein operators as skew-adjoints

In all generality we get the following :

E [Dg(X )f (x)] = −E [g(X )TX f (X )]

for all f ∈ F(X ) and all g ∈ dom(D, f ,X ).

The canonical Stein operator for X is thus, in some sense, skew adjoint
to D with respect to integration in X .

With this definition, up to the choice of D, there is therefore only one
canonical Stein operator.

Theorem

Characterization :

Y
D
= X if and only if E [f (Y )Dg(Y )] = −E [g(Y )TX f (Y )]

for all f ∈ F(X ) and for all g ∈ dom(D,X , f ) .



Stein characterisations

Let Y be continuous with pdf q, and same support as X with pdf p.

Suppose that q
p is differentiable and fix g ∈ ∩f∈F(X )dom((·)′ ,X , f )

such that g is X -a.s. never 0 and g q
p is differentiable.

Then

Y
D
= X if and only if E [f (Y )g ′(Y )] = −E [g(Y )TX f (Y )]

for all f ∈ F(X ).

Let f ∈ F(X ) be X -a.s. never zero and assume that dom((·)′ ,X , f )
is dense in L1(X ).

Then

Y
D
= X if and only if E [f (Y )g ′(Y )] = −E [g(Y )TX f (Y )]

for all g ∈ dom((·)′ ,X , f ).



Some special cases

Take g ≡ 1 (this is always permitted) to obtain the Stein characterization

Y
D
= X if and only if E [TX f (Y )] = 0 for all f ∈ F(X ).

Example: for p the standard normal pdf,

ETX f (Y ) = E [f ′(Y )− Yf (Y )] = 0.

If f ≡ 1 is in F(X ) then we obtain the Stein characterization

Y
D
= X ⇐⇒ E[g ′(Y )] = −E

[
p′(Y )

p(Y )
g(Y )

]
for all g ∈ dom((·)′,X , 1).

Example: for p the standard normal pdf,

Eg ′(Y ) = EYg(Y ).



The inverse Stein operator

For h ∈ F (0)(X ) =
{

h : R→ R such that E [h(X )] = 0
}

we define the

inverse Stein operator T −1X : F (0)(X )→ F(X ) as

T −1X h(x) =
1

p(x)

∫ x

a

p(y)h(y)dy = − 1

p(x)

∫ b

x

p(y)h(y)dy .

Example: for p the standard normal pdf, and h with standard normal
mean 0,

T −1X h(x) = −e
x2

2

∫ ∞
x

h(y)e−
y2

2 dy .

In all generality, this operator is such that

E [g(X )h(X )] = −E
[
Dg(X )T −1X h(X )

]
for all h ∈ F (0)(X ) and all g ∈ dom(D).



Product rule

The Stein operator satisfies the product rule

TX (fg(·+ l)) = fDg + gTX f

with f ∈ F(X ) and g ∈ dom(D,X , f ).

We introduce the class

dom(D,X ) =
⋂

f∈F(X )

dom(D,X , f ).

The classes dom(D,X ) and F(X ) are defined with minimal conditions,
and often quite complicated to write out explicitly.



Stein equations

Let h ∈ L1(X ). We introduce the Stein equation for the target X

h(x)− Eh(X ) = f (x)g ′(x) + g(x)TX f (x),

whose solutions are pairs of functions (f , g) such that f ∈ F(X ),
g ∈ dom((·)′,X , f ) and

fg = T −1X (h − Eph).

Although fg is unique, the individual f and g are not (just consider
multiplication by constants).

Example: for X standard normal,

h(x)− Eh(X ) = f (x)g ′(x) + g(x)(f ′(x)− xf (x)).



Special Stein operators

Our general Stein operator acts on pairs of functions (f , g);

A(f , g)(x) = TX (fg)(x) = f (x)g ′(x) + g(x)TX f (x).

Several operators are immediate to obtain from here :

Fix a differentiable g and use

AX f = TX (fg) = fg ′ + gTX f

with f ∈ FA(X ) ⊂ F(X ).

Fix f = c ∈ F(X ) and use

AXg(x) = c(x)g ′(x) + g(x)TX c(x)

with g ∈ dom((·)′,X , c). Sometimes we call this the c-operator (see
Goldstein and Reinert (2013)).

Infinitely many other options are available.



The score function

Suppose that X is such that the constant function 1 ∈ F(X ) (this is no
small assumption).

Then taking c = 1 in

AXg(x) = c(x)g ′(x) + g(x)TX c(x).

we get
AXg(x) = g ′(x) + g(x)ρ(x)

with

ρ(x) = TX1(x) =
p′(x)

p(x)

the score function of X ; indeed

E [g(X )TX1(X )] = −E [g ′(X )]

for all g ∈ dom((·)′,X , 1).



The Stein kernel

Suppose that X has finite mean ν.

Take c = T −1X (ν − Id) with Id the identity function in

AXg(x) = c(x)g ′(x) + g(x)TX c(x)

to get
AXg(x) = τ(x)g ′(x) + (ν − x)g(x).

with
τ = T −1X (ν − Id)

the Stein kernel of X ; indeed

E
[
g ′(x)T −1X (ν − Id)

]
= E [g(X )(X − ν)]

for all g ∈ dom((·)′,X , τ).



In general

There are now Stein operators in the literature for dozens of types of
distributions; some operators are first order,

Tcenteredgammaf (x) = 2(x + ν)f ′(x)− xf (x)

some are second order

Tvariancegammaf (x) = xf ′′(x) + (2ν + 1)f ′(x)− xf (x),

some are even more complicated.

All these can be written in the form

AX f = TX (A(f ))

for A a suitable transformation of the test function, and we call the
process leading to specific expressions of the operators standardizations
of the test functions.



Example: Normal

In the example of a N (0, σ2) random variable, our operator translates to

TN f (x) = f ′(x)− 1

σ2
xf (x)

which contrasts with
σ2f ′(x)− xf (x),

the standard Stein operator for this case. The score function is − x
σ2 . We

compute the Stein kernel
τ(x) = σ2.

The c-Stein operator is the standard operator.



Example: Beta

Consider beta distributions with density

p(x ;α, β) =
xα−1(1− x)β−1

B(α, β)
1{x∈[0,1]}.

Here

TB f (x) = −f ′(x)− 1

x(1− x)
f (x)((α− 1)x − (β − 1)(1− x)).

The standard Stein operator for this case is

Af (x) = x(1− x)f ′(x) + (α(1− x)− βx)f (x),

see Doebler (2012). The score function, defined when α > 1 and β > 1,
is

ρ(x) =
α

x
− β − 1

x − 1
.

The beta Stein kernel is

τ(x) =
x(1− x)

α + β
.
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Approximate computation of expectations

Theorem

Let h be a function such that Ei |h| <∞ for i = 1, 2.

Let (f , g) solve the X1-Stein equation for h. Then

E2h − E1h = E [f (X2)D?1g(X2)− g(X2)T1f (X2)] .

Fix f1 ∈ F1 and define gh := 1
f1
T −11 (h − E1h). Then

E2h − E1h = E2 [f1D?1gh − f2D?2gh + ghT1f1 − ghT2f2]

for all f2 ∈ F2 such that gh ∈ dom(D2,X2, f2).

Fix g1 ∈ dom(D1,X1) and define fh := 1
g1
T −11 (h − E1h). Then

E2h − E1h = E2 [fhD?1g1 − fhD?2g2 + g1T1fh − g2T2fh] .

if fh ∈ F1 ∩ F2, for all g2 ∈ dom(D2,X2).



A Corollary

Corollary

Let H be any class of functions h : R→ R such that Ei |h| <∞ for
i = 1, 2.

1 For all c such that [mild assumptions]

sup
h∈H
|E1h − E2h| ≤ κH,1E2|T1c − T2c | (2)

with κH,1 = suph∈H ‖(1/c) T −11 (h − E1h)‖∞.

2 For all g such that [mild assumptions]

sup
h∈H
|E1h − E2h| ≤ κH,2E2|T −11 (g)− T −12 (g)| (3)

with κH,2 = suph∈H ‖((1/T −11 g) T −11 (h − E1h))′‖∞.



Binomial approximation

Let X ∼ Bin(n, p) and W =
∑n

i=1 Xi with Xi ∼ Bin(1, pi ), i = 1, . . . , n,
and np =

∑n
i=1 pi . Use D = ∆+, the forward difference.

It is easy to show

τX (x) = (1− p)x and τXi (x) = (1− pi )x .

Then

|Eh(X )− Eh(W )| ≤ ||Dgh||∞
n∑

i=1

|pi − p|pi .

Similarly comparing “scores” we get

|Eh(X )− Eh(W )| ≤ 2‖gh‖∞
1− p

n∑
i=1

|p − pi |pi .



Example: Distance between Gaussians

For Xi ∼ N (0, σ2
i ), i = 1, 2.

Using τi (x) = σ2
i we get

dTV(X1,X2) ≤ 2
|σ2

1 − σ2
2 |

σ2
2

.

Using ρi (x) = −x/σ2
i we get

dTV(X1,X2) ≤ σ1
√
π

2
E|X2|

∣∣∣∣ 1

σ2
1

− 1

σ2
2

∣∣∣∣ =

∣∣σ2
1 − σ2

2

∣∣
σ1σ2

.

If σ1 <
σ2

2 then this bound beats the first bound.



From Student to Gauss

Set X1 = Z standard Gaussian and X2 = Wν a Student t random
variable with ν > 2 degrees of freedom.

We have τ1 = 1 and τ2(x) = x2+ν
ν−1 which yields

dTV(Z ,Wν) ≤ 2E
∣∣∣∣W 2

ν + ν

ν − 1
− 1

∣∣∣∣ ≤ 4

ν − 2
.

We can also use score functions to get

dTV(Z ,Wν) ≤
√
π

2

−2 + 8
(

ν
1+ν

)(1+ν)/2
(ν − 1)

√
νB(ν/2, 1/2)

,

which is of the same order, with a better constant.
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A canonical Stein operator

Let X ∼ p : Rd → R a differentiable distribution on Rd .

Given a d-dimensional vector field F we write div the usual divergence
operator divF (x) =

∑d
i=1 ∂iF (x).

The canonical Stein operator of p is

TXF =
div(Fp)

p

acting on differentiable vector fields F : Rd → Rd or d × d matrices F .

We define F(X ) as the class of all vector fields for which
E [TXF (X )] = 0.



Literature review

Many authors have considered (unwittingly) the operator TXF :

Landsman and Neslehova and coauthors (2010:2014) in the context
of elliptical distributions;

Chatterjee and Meckes (2008) and Reinert and Röllin (2009) for
multivariate normal

Brown et al. (2006) in the context of the heat equation

Nourdin, Peccati and Swan (2014:2014) specifically via Stein
matrices

Artstein et al (2004:2014) with variational considerations in mind.

We can use these results to propose a general version of Stein’s method
also in arbitrary (finite) dimension.



Stein operator for multivariate Gaussian

For instance, taking F = G∇f with G a symmetric d × d matrix then
(1) becomes

TX f =
d∑

i,j=1

∂i (Gij∂j f ) +
d∑

i,j=1

Gij∂j f
∂ip

p

= ∇t · (G∇f ) +∇f tG∇ log p

In particular, if p = φ is the density of a Nd(0,Σ) random vector then

∇ log p(x) = −Σ−1x

so that, taking G = Σ, the operator becomes

TX f (x) =
d∑

i,j=1

σij∂ij f (x) + (∇f (x))′x ,

which one recognizes as the standard operator for the Gaussian,



Stein operators

In all generality, given three functions G ∈ Rd×d , g ∈ Rd and f ∈ R we
introduce the family of scalar operators

AX (G , f , g) = TX (Ggf ) = div(Gg)f + g tG t∇(fp)

p
,

and vector operators

AX (G , f ) = TX (Gf ) = div(G )f + G tTX (f ),

different choices of G , g and f will lead to different operators.

These generalize in particular the Stein kernels (now matrices) and score
functions (now vectors) to arbitrary dimensions.

We even have explicit inverses under certain circumstances.



Conclusion

Further reading :

Approximate computation of expectations : a canonical Stein
operator (with C. Ley and G. Reinert).

A handbook of Stein operators (with C. Döbler, R. Gaunt, C. Ley
and G. Reinert).

Integration by parts and representation of information functionals
(with G. Peccati and I. Nourdin). Proceedings of the 2014 IEEE
International Symposium on Information Theory (2014)

Entropy and the fourth moment phenomenon (with G. Peccati and I.
Nourdin). The Journal of Functional Analysis 266 (5), 3170-3207
(2014)
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