
PROBABILITY 3 REVISION NOTES

AARON SMITH
(REVISED BY MÁRTON BALÁZS)

1. Random Variables; Convolutions

1.1. Definition. A random variable X is discrete if there are countably many possible values X can take.

1.2. Definition. A random variable X is (absolutely) continuous if for all sets A ⊆ R (“of practical inter-
est”/measurable) we have that

P(X ∈ A) =
∫

A
f(x)dx,

with a function f called the density of X.

1.1. Discrete random variables.

1.3. Example (Integer valued random variable). X ∈ Z; we define p(k) := P(X = k) with the properties
p(k) ≥ 0 for all k ∈ Z and

∑
k∈Z p(k) = 1. We define the expectation EX =

∑
k∈Z kp(k) and the nth

moment to be EXn =
∑

k∈Z k
np(k). In general, Eg(X) =

∑
k∈Z g(k)p(k) for a function g on integers. In

the above we assumed that the sums exist.

1.4. Definition (Binomial distribution). X ∼ Binomial(n, p); n ∈ N; p ∈ [0, 1] with mass function

p(k) =

(
n

k

)
pkqn−k

(here and often in the sequel q = 1− p; notice that the binomial coefficient is only non-zero for 0 ≤ k ≤ n).
• Meaning : X is the number of successes in n independent trials; each is a success with probability p.

• Mass function? By Newton’s Binomial Theorem: (a+ b)n =
∑n

k=0

(n
k

)
anbn−k.

• Expectation and Variance? X is the sum of n independent Bernoulli(p) random variables i.e. X
d
=∑n

i=1Xi where Xi ∼ i.i.d. Bernoulli(p); hence EX = np; VarX = npq.

1.5. Definition (Bernoulli distribution). X ∼ Bernoulli(p); p ∈ [0, 1] where Bernoulli(p)
d
= Binomial(1, p);

hence has mass function
p(0) = q, p(1) = p.

• Intuition: There is a success X = 1 with probability p and a failure X = 0 with probability q.

• Mass function? p+ q = 1.

• Expectation and Variance? EX = p; EX2 = p so VarX = E(X−EX)2 = EX2−[EX]2 = p−p2 = pq.

1.6. Definition (Geometric distribution). X ∼ Geometric(p) or X ∼ OptGeom(p) if X is the number of
trials until the first success; each happening independently and with probability p ∈ [0, 1].

Y ∼ PessGeom(p) if Y is the number of failures in a sequence of independent trials (each a success with
probability p) before the first success.

pX(k) = qk−1p; k = 1, 2, . . . pY (k) = qkp; k = 0, 1, . . . .

• Remark : Y
d
= X − 1 since the number of failures is one less than the number of trials needed to see

the first success.
1
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• Mass function? Sum of geometric series:
∑b

k=a cr
k = cra 1−r

b−(a−1)

1−r . Hence

∞∑

k=1

pX(k) =

∞∑

k=1

qk−1p =
p

1− q = 1.

For the Pessimistic Geometric
∑∞

k=0 pY (k) =
∑∞

k=0 q
kp = p

1−q = 1.

• Expectation and Variance? Use the formula for sum of geometric series (and the differentiated
version). EX = 1

p ; VarX = q
p2
.

• Y d
= X − 1 =⇒ EY = EX − 1 = 1

p − 1 = q
p ; VarY = VarX = q

p2 .

1.7. Definition (Negative Binomial distribution). X ∼ NegBin(r, p); r ∈ N; p ∈ [0, 1]. X is the number of
independent trials (success with probability p) until the rth success.

p(k) =

(
k − 1

r − 1

)
qk−rpr; k = r, r + 1, . . . .

• Need r successes contributing pr; k − r failures contributing qk−r multiplied by the
(k−1
r−1

)
ways of

rearranging the first r − 1 successes within the first k − 1 positions.

• NegBin(1, p)
d
= OptGeom(p).

• Mass function? First change the summation variable to get
∞∑

k=r

p(k) =

∞∑

k=r

(
k − 1

r − 1

)
qk−rpr = pr

∞∑

m=0

(
m+ r − 1

r − 1

)
qm = pr

∞∑

m=0

(
m+ r − 1

m

)
qm.

Next, use the general definition of a binomial coefficient
(α
m

)
for real α and non-negative integer m

to write (−r
m

)
=

(−r) · (−r − 1) · · · (−r −m+ 1)

m!

= (−1)m (r +m− 1) · (r +m− 2) · · · r
m!

= (−1)m
(
m+ r − 1

m

)
.

Thus,
∞∑

k=r

p(k) = pr
∞∑

m=0

(−r
m

)
(−q)m = pr

∞∑

m=0

(−r
m

)
(−q)m · 1−r−m = pr · (1− q)−r = 1

by Newton’s Binomial Theorem, also valid in this more general form. As you see there is a good
reason to call these distributions Negative Binomial.

• Expectation and Variance? Show later that sum of r independent Geometric(p) distributions =⇒
EX = r

p and VarX = rq
p2 .

1.8. Definition (Poisson distribution). X ∼ Poisson(λ) is the limiting distribution of Binomial(n, p(n)) as
n→∞ and limn→∞ np(n) = λ [see later].

p(k) =
e−λλk

k!
; k = 0, 1, . . . .

• Intuition: X is the number of events which happen at rate λ.

• Mass function? By definition of exponential function as a sum.

• Expectation and Variance? EX = VarX = λ.

1.9. Definition (Hypergeometric distribution). X has Hypergeometric distribution if it has mass function

p(k) =

(m
k

)(N−m
n−k

)
(N
n

) =

(n
k

)(N−n
m−k

)
(N
m

) ; k = (n+m−N)+, . . . ,min{n,m}.



PROBABILITY 3 REVISION NOTES 3

• Intuition: There are N deer; m are tagged; we catch n of them. X is the number of the caught deer
which are tagged, i.e., the Hypergeometric distribution is the size of an intersection of two subsets
of a population size N . What is the probability that the number of caught deer which are tagged is
k?

There are
(
N
n

)
possible ways of catching the n deer.

There are
(m
k

)
ways of choosing the k from all m tagged deer.

There are
(
N−m
n−k

)
ways of choosing the n− k untagged from the total N −m untagged deer.

• Mass function? Clearly from construction.

• Expectation and Variance? Each of the n captures has a probability m
N of being a tagged deer. Let

1i be the indicator that the ith capture is a tagged deer. Then by linearity of expectation

EX = E

n∑

i=1

1i =

n∑

i=1

m

N
=
mn

N
.

1.2. Independence.

1.10. Definition. X and Y are independent if for all A,B ⊆ R measurable,

P(X ∈ A,Y ∈ B) = P(X ∈ A)P(Y ∈ B).

For integer valued random variables, this is equivalent to pX,Y (n,m) = pX(n)pY (m) for all n, m.

1.3. Convolution of integer valued random variables.

X and Y independent integer valued random variables. What is the mass function of X + Y ? Define
pX+Y (k) := P(X + Y = k) then

pX+Y (k) = P({X + Y = k}) = P

( ∞⋃

i=−∞
({X = k − i} ∩ {Y = i})

)
.

Since
⋃∞
i=−∞({X = k − i} ∩ {Y = i}) is a disjoint partition of {X + Y = k} (Why? {Y = i} is a disjoint

partition of Ω so {X = k− i} ∩ {Y = i} is still a disjoint set over i, but now it has union {X + Y = k}), we
have that

1.11. Definition (Convolution of mass functions).

pX+Y (k) =
∞∑

i=−∞
P({X = k − i} ∩ {Y = i}) =

∞∑

i=−∞
pX(k − i)pY (i).

by independence of X and Y .

1.12. Remark. This sum converges since
∑∞

i=−∞ pX(k − i)pY (i) ≤
∑∞

i=−∞ pY (i) = 1.

1.13. Theorem (Convolution of binomials).

Binomial(n, p) ∗ Binomial(m, p)
d
= Binomial(n+m, p).

Proof. We can easily see this by considering the binomials as sums of Bernoullis. Indeed, X
d
=

∑n
i=1Xi;

Xi
i.i.d.∼ Bernoulli(p) and Y

d
=

∑m
i=1 Yi; Yi

i.i.d.∼ Bernoulli(p) and as the two sets of Bernoullis are also
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independent, X + Y
d
=

∑n
i=1Xi +

∑m
i=1 Yi

d
=

∑m+n
i=1 Zi where Zi

i.i.d.∼ Bernoulli(p) meaning X + Y ∼
Binomial(n+m, p).

Using convolutions?
∞∑

i=−∞
pX(k − i)pY (i) =

∞∑

i=−∞

(
n

k − i

)
pk−iqn−(k−i)

(
m

i

)
piqm−i

= pkqn+m−k
∞∑

i=−∞

(
n

k − i

)(
m

i

)

=

(
n+m

k

)
pkqn+m−k

∞∑

i=−∞

(
n
k−i

)(
m
i

)
(
n+m
k

) .

This sum is equal to 1 since it is the sum of the mass function of a Hypergeometric distribution with n+m
deer; m are tagged and we capture k. �

1.14. Theorem (Convolution of Poissons).

Poisson(λ) ∗ Poisson(µ) d
= Poisson(λ+ µ).

Proof.

∞∑

i=−∞
pX(k − i)pY (i) =

k∑

i=0

e−λλk−i

(k − i)!
e−µµi

i!
= e−(λ+µ)

k∑

i=0

λk−i

(k − i)!
µi

i!
=
e−(λ+µ)

k!

k∑

i=0

(
k

i

)
λk−iµi

︸ ︷︷ ︸
=(λ+µ)k

by Newton’s binomial theorem. �

1.15. Lemma (Pascal’s identity). The binomial coefficients can be arranged as in Pascal’s triangle
(
n

r

)
=

(
n− 1

r − 1

)
+

(
n− 1

r

)
.

Analytic proof.
(
n− 1

r − 1

)
+

(
n− 1

r

)
=

(n− 1)!

(n− r)!(r − 1)!
+

(n− 1)!

(n− r − 1)!r!
=

(n− 1)!r

(n− r)!r! +
(n− 1)!(n − r)

(n− r)!r! =
n!

(n− r)!r! . �

Combinatorial proof. Consider choosing r items from n where one of them is marked. Ways of choosing
with marked in selection =

(n−1
i−1

)
; ways of choosing without marked in selection =

(n−1
i

)
. �

1.16. Example. By induction we have the following

(a) Geometric(p) ∗Geometric(p)
d
= NegBin(2, p);

(b) NegBin(r, p) ∗Geometric(p)
d
= NegBin(r + 1, p);

(c) ∗rGeometric(p)
d
= NegBin(r, p);

(d) NegBin(r, p) ∗ NegBin(s, p) d
= NegBin(r + s, p).
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Proof. It is clear that (c) follows from (a) and (b) by induction and (d) follows from (c). Let X,Y
i.i.d.∼

Geometric(p). Then

∞∑

i=−∞
pX(k − i)pY (i) =

k−1∑

i=1

qk−i−1pqi−1p = p2qk−2(k − 1);

hence X + Y ∼ NegBin(2, p). This proves (a) and forms the basis step for (c).

Now let X ∼ Geometric(p) and Y ∼ NegBin(r, p). Then

∞∑

i=−∞
pX(k − i)pY (i) =

k−1∑

i=r

qk−i−1p

(
i− 1

r − 1

)
qi−rpr = qk−(r+1)pr+1

k−1∑

i=r

(
i− 1

r − 1

)
.

Hence it suffices to check that
∑k−1

i=r

(i−1
r−1

)
=

(k−1
r

)
. We use Pascal’s identity.

k−1∑

i=r

(
i− 1

r − 1

)
=

k−1∑

i=r

[(
i

r

)
−

(
i− 1

r

)]
=

(
k − 1

r

)
−

(
r − 1

r

)
=

(
k − 1

r

)
.

(c) now follows and thus (d) is proved. �

1.4. Continuous random variables; convolutions thereof.

Let X and Y be independent continuous random variables. What is the distribution of X + Y ?

FX+Y (a) = P(X + Y ≤ a) =
∫ ∫

{x+y≤a}
f(x, y)dxdy =

∫ ∞

−∞

∫ a−y

−∞
fX(x)dxfY (y)dy;

hence we have that

1.17. Definition (Convolution of distribution functions).

FX+Y (a) =

∫ ∞

−∞
FX(a− y)fY (y)dy.

Furthermore, we can differentiate to find the convolution of density functions.

d

da
FX+Y (a) =

d

da

∫ ∞

−∞
FX(a− y)fY (y)dy =

∫ ∞

−∞

d

da
FX(a− y)fY (y)dy =

∫ ∞

−∞
fX(a− y)fY (y)dy.

1.18. Definition (Convolution of density functions).

fX+Y (a) =

∫ ∞

−∞
fX(a− y)fY (y)dy.

1.19. Definition (Uniform distribution). X ∼ Uniform(a, b) if X is equally likely to “fall anywhere” between
a and b.

f(x) =

{
1
b−a , if x ∈ [a, b],

0, otherwise.

• Density function?
∫ b
a

1
b−adx = 1.

• Expectation and Variance? EX = a+b
2 ; VarX = (b−a)2

12 .
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1.20. Example. Convolution of two independent Uniform(0, 1) random variables.

fX+Y (a) =

∫ ∞

−∞
fX(a− y)fY (y)dy =

∫ ∞

−∞
1{0≤a−y≤1}1{0≤y≤1}dy =

∫ ∞

−∞
1{a−1≤y≤a}1{0≤y≤1}dy

=





0 a < 0,∫ a
0 dy a ∈ [0, 1),∫ 1
a−1 dy a ∈ [1, 2),

0 a ≥ 2.

=





0 a < 0,

a a ∈ [0, 1),

2− a a ∈ [1, 2),

0 a ≥ 2.

=⇒ X + Y has triangular distribution.

1.21. Definition (Exponential distribution). X ∼ Exponential(λ); λ ≥ 0.

f(x) =

{
λe−λx, if x > 0,

0 otherwise.

• Distribution? F (x) = 1− e−λx for x > 0 and 0 otherwise.

• Density function?
∫∞
0 λe−λxdx = −e−λx|∞0 = 1.

• Expectation and Variance? Integration by parts, EX = 1
λ ; VarX = 1

λ2
.

1.22. Definition (Normal distribution). X ∼ N (µ, σ2); µ ∈ R; σ > 0.

f(x) =
1√
2πσ2

e−
(x−µ)2

2σ2 .

• Distribution? Defined equal to Φ(x) in the standard case µ = 0, σ = 1.

• Density function? Define I :=
∫∞
−∞ ϕ(x)dx where ϕ is the density of Z ∼ N (0, 1).

I2 =

∫ ∞

−∞

∫ ∞

−∞
ϕ(x)ϕ(y)dxdy =

1

2π

∫ ∞

−∞

∫ ∞

−∞
e−

x2+y2

2 dxdy =
1

2π

∫ 2π

0

∫ ∞

0
re−

r2

2 drdθ = 1

and hence I = 1. By making a substitution we can verify it is a density function for general normal
distribution.

• If X ∼ N (µ, σ2) then X−µ
σ

d
= Z where Z ∼ N (0, 1). Indeed let Z = X−µ

σ then

FZ(z) = P(Z ≤ z) = P

(
X − µ
σ

≤ z
)

= P(X ≤ σz + µ) = FX(σz + µ).

Hence

fZ(z) =
d

dz
FZ(z) =

d

dz
FX(σz + µ) = fX(σz + µ)× σ = ϕ(z).

• Expectation and Variance? EZ = 1√
2π

∫∞
−∞ xe−

x2

2 dx = 0 as odd function integrated over the real

line. EZ2 = 1√
2π

∫∞
−∞ x2e−

x2

2 dx = − 1√
2π
xe−

x2

2 |∞−∞ + 1√
2π

∫∞
−∞ e−

x2

2 dx = 1 and so VarZ = 1.

Since X = σZ + µ, EX = µ; VarX = σ2.

1.23. Theorem (Convolution of Normals).

N (µ, σ2) ∗ N (ν, τ2)
d
= N (µ+ ν, σ2 + τ2).

Proof. Let X ∼ N (µ, σ2) and Y ∼ N (ν, τ2). First consider the case where µ = ν = 0.

fX+Y (a) =

∫ ∞

−∞
fX(a− y)fY (y)dy =

1

2πστ

∫ ∞

−∞
e−

(a−y)2

2σ2 e−
y2

2τ2 dy =
1

2πστ

∫ ∞

−∞
e−

1
2
∗dy,
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where

∗ = (a− y)2
σ2

+
y2

τ2

=
y2

σ2
+
y2

τ2
− 2ay

σ2
+
a2

σ2

=
σ2 + τ2

σ2τ2

(
y2 − 2aτ2

σ2 + τ2
y

)
+
a2

σ2

=
σ2 + τ2

σ2τ2

(
y − aτ2

σ2 + τ2

)2

+
a2

σ2
− σ2 + τ2

σ2τ2

(
aτ2

σ2 + τ2

)2

=
σ2 + τ2

σ2τ2

(
y − aτ2

σ2 + τ2

)2

+
a2

σ2
− a2τ2

σ2(σ2 + τ2)

=
σ2 + τ2

σ2τ2

(
y − aτ2

σ2 + τ2

)2

+
a2(σ2 + τ2)− a2τ2

σ2(σ2 + τ2)

=
σ2 + τ2

σ2τ2

(
y − aτ2

σ2 + τ2

)2

+
a2

σ2 + τ2
.

Substituting this into the above we get that

fX+Y (a) =
1

2πστ

∫ ∞

−∞
e
− 1

2

[
σ2+τ2

σ2τ2

(
y− aτ2

σ2+τ2

)2]
dy × e−

1
2

a2

σ2+τ2 .

Let x =
√
σ2+τ2

στ

(
y − aτ2

σ2+τ2

)
, then

fX+Y (a) =
1

2πστ

∫ ∞

−∞
e−

x2

2
στ√
σ2 + τ2

dx× e−
1
2

a2

σ2+τ2 =
1√

2π(σ2 + τ2)
e
− 1

2
a2

σ2+τ2 ,

and so X + Y ∼ N (0, σ2 + τ2). Now for general µ and ν,

X + Y = X − µ+ Y − ν + µ+ ν.

X − µ ∼ N (0, σ2) and Y − ν ∼ N (0, τ2) hence, by the above, X − µ + Y − ν ∼ N (0, σ2 + τ2). Moreover,
the result follows. �

1.24. Definition (Cauchy distribution). Let b ∈ R; a > 0. Consider a torch hanging at height a above b on
the real axis. The torch points at an angle α from the downwards vertical where α ∼ Uniform(−π

2 ,
π
2 ). Let

tan(α) =
X − b
a

,

so X is the position the light beam hits the real axis. We say X ∼ Cauchy(b, a). What is the distribu-
tion/density function of X?

FX(x) = P(X ≤ x) = P

(
tan(α) ≤ x− b

a

)
= P

(
α ≤ arctan

x− b
a

)
=

1

π

[
π

2
+ arctan

(
x− b
a

)]

=
1

2
+

1

π
arctan

(
x− b
a

)
.

fX(x) =
d

dx
FX(x) =

1

π

1

1 + (x−ba )2
1

a
=

1

π

a

a2 + (x− b)2 .

1.25. Remark. We say X has standard Cauchy distribution if X ∼ Cauchy(0, 1) i.e., a = 1, b = 0. Making
the necessary substitutions above,

F (x) =
1

2
+

1

π
arctan(x) and f(x) =

1

π

1

1 + x2
.
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1.26. Remark. The Cauchy distribution has no mean or variance. This is because EX = O(
∫∞
−∞

1
xdx), which

is undefined.

1.27. Proposition. Let X ∼ Cauchy(b, a). Then λX + µ ∼ Cauchy(λb+ µ, |λ|a). In particular, if Z is
standard Cauchy, then aZ + b ∼ Cauchy(b, a) for a > 0.

Proof. Assume that λ > 0 such that λx+ µ is an increasing function of x. Then

FλX+µ(x) = P(λX + µ ≤ x) = P

(
X ≤ x− µ

λ

)
=

1

2
+

1

π
arctan

(
x− µ− bλ

aλ

)
.

Differentiating with respect to x,

fλX+µ(x) =
1

π

1

aλ

1

1 + (x−µ−bλaλ )2
=

1

π

aλ

(aλ)2 + (x− µ− bλ)2 . �

1.28. Lemma (Cauchy’s residue theorem). Let U be a simply connected (any closed curve in U can be
continuously shrunk to a point inside the set) open domain in C; z1, z2, . . . , zn ∈ C; and f holomorphic
(differentiable) on U\{z1, . . . , zn}. If γ is a closed curve orientated positively (interior on left) in U then

∮

γ
f(z)dz = 2πi

n∑

i=1

Res(f ; zi).

Note that if f has Laurent series f(z) =
∑∞

n=−∞ cn(z − zi)n then we define Res(f ; zi) = c−1.

1.29. Theorem (Convolution of Cauchys).

Cauchy(bX , aX) ∗Cauchy(bY , aY ) d
= Cauchy(bX + bY , aX + aY ).

Proof. Let X ∼ Cauchy(bX , aX) and Y ∼ Cauchy(bY , aY ). Then

fX+Y (z) =

∫ ∞

−∞
fX(z − x)fY (x)dx =

∫ ∞

−∞

1

π

aX
a2X + (z − x− bX)2

1

π

aY
a2Y + (x− bY )2

dx = lim
R→∞

∫ R

−R
g(x)dx.

We extend the integral into the upper half plane, denoted γ and denote by ϕ the semicircular path joining
R to −R in the upper half plane. Then

∮

γ
g(x)dx =

∮

ϕ
g(x)dx +

∫ R

−R
g(x)dx =⇒ fX+Y (z) = lim

R→∞

∮

γ
g(x)dx − lim

R→∞

∮

ϕ
g(x)dx.

Along ϕ, |g(x)| ≤ | Cx2 | = C
R2 for some C > 0. Hence

∣∣∣∣
∮

ϕ
g(x)dx

∣∣∣∣ ≤
∮

ϕ
|g(x)|dx ≤

∮

ϕ

C

R2
dx =

πC

R
→ 0 =⇒ lim

R→∞

∮

ϕ
g(x)dx = 0.

Thus it remains to compute the integral over the semicircle and the real line between −R and R. Since this
curve γ is a closed curve, we can use Cauchy’s residue theorem. What are the singularities of

g(x) =
1

π2
aX

a2X + (z − x− bX)2
aY

a2Y + (x− bY )2
?

• a2X + (z − x− bX)2 = 0 when z − x− bX = ±iaX if and only if x = z − bX ± iaX .
• a2Y + (x− bY )2 = 0 when x− bY = ±iaY if and only if x = bY ± iaY .
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Note that the two residues in the upper half plane are z − bX + iaX and bY + iaY . We have that g(x) can
be rewritten as

g(x) =
aXaY
π2

1

[x− (z − bX + iaX)][x− (z − bX − iaX)][x− (bY + iaY )][x− (bY − iaY )]

=
aXaY
π2

1

[x− z + bX − iaX ][x− z + bX + iaX ][x− bY − iaY ][x− bY + iaY ]
.

Now we calculate residues. For a simple pole y, Res(g; y) = limx→y(x− y)g(x). Hence

Res(g; z − bX + iaX) =
aXaY
π2

1

[x− z + bX + iaX ][x− bY − iaY ][x− bY + iaY ]

∣∣∣∣
x=z−bX+iaX

=
aXaY
π2

1

2iaX [z − (bX + bY ) + i(aX − aY )︸ ︷︷ ︸
:=A

][z − (bX + bY ) + i(aX + aY )︸ ︷︷ ︸
:=B

]

=
aY

2iπ2AB
.

Res(g; bY + iaY ) =
aXaY
π2

1

[x− z + bX − iaX ][x− z + bX + iaX ][x− bY + iaY ]

∣∣∣∣
x=bY +iaY

=
aXaY
π2

1

[−z + (bX + bY )− i(aX − aY )︸ ︷︷ ︸
=−A

][−z + (bX + bY ) + i(aX + aY )︸ ︷︷ ︸
=−B

]2iaY

=
aX

2iπ2AB
.

Hence by Cauchy’s residue theorem, we have that

fX+Y (z) = 2πi
[
Res(g; z − bX + iaX) + Res(g; bY + iaY )

]

= 2πi

[
aY

2iπ2AB
+

aX

2iπ2AB

]

=
1

π

[
aY
AB

+
aX

AB

]

=
1

π

aYB + aXB

A|B|2 .

We simplify the numerator.

aYB + aXB = aY
[
z − (bX + bY )− i(aX + aY )

]
+ aX

[
z − (bX + bY ) + i(aX + aY )

]

= (aX + aY )
[
z − (bX + bY ) + i(aX − aY )

]

= (aX + aY )A.

Furthermore,

fX+Y (z) =
1

π

aX + aY
|B|2 =

1

π

aX + aY

(aX + aY )2 +
[
z − (bX + bY )

]2 . �

1.30. Remark. Let X and Y be independent standard Cauchy random variables. Then by the theorem
above, X + Y ∼ Cauchy(0, 2). By the transformation of a standard Cauchy 2X ∼ Cauchy(0, 2). This is
highly unusual – we would not expect two times a random variable to have the same distribution as the sum
of two independent copies.

Indeed this implies that we cannot have a finite variance: Var(X + Y ) = 2VarX but Var(2X) = 4VarX
which cannot be equal for a finite positive variance.

Furthermore, if Xi
i.i.d.∼ Cauchy(0, 1) then

X1 + · · ·+Xn ∼ Cauchy(0, n) =⇒ X1 + · · · +Xn

n
∼ Cauchy(0, 1)
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and we see that the strong law of large numbers does not hold. This is because a Cauchy distribution does
not have finite mean.

1.31. Definition (Gamma function, Gamma distribution). We define the Gamma function Γ : R+ → R via

Γ(z) =

∫ ∞

0
xz−1e−xdx (z > 0).

We have Γ(1) =
∫∞
0 e−xdx = 1 (density of Exponential(1) distribution). Furthermore,

Γ(z) =

∫ ∞

0
xz−1e−xdx = −xz−1e−x

∣∣∞
0︸ ︷︷ ︸

=0

+

∫ ∞

0
(z − 1)xz−2e−xdx = (z − 1)Γ(z − 1).

Moreover, for n ∈ Z+, Γ(n) = (n − 1)Γ(n − 1) = · · · = (n − 1)!Γ(1) = (n− 1)!.

We can define the Gamma(n, λ); λ > 0, n ∈ N, and the general Gamma(t, λ) (t > 0) distributions with
respective density functions

f(x) =

{
λn

(n−1)!x
n−1e−λx x > 0

0 otherwise,
and f(x) =

{
λt

Γ(t)x
t−1e−λx x > 0

0 otherwise.

Notice from the above working that these are exactly the same but with t = n ∈ N.

• Density function? By the definition of Gamma function and making the substitution y = λx,
∫ ∞

0

λt

Γ(t)
xt−1e−λxdx =

λt

Γ(t)

∫ ∞

0

(
y

λ

)t−1

e−y
1

λ
dy =

λt

Γ(t)

Γ(t)

λt
= 1.

• Expectation and Variance? By the properties of the Gamma function.

EX =

∫ ∞

0
x
λt

Γ(t)
xt−1e−λxdx =

λt

Γ(t)

∫ ∞

0

(
y

λ

)t
e−y

1

λ
dy =

Γ(t+ 1)

λΓ(t)
=
t

λ
.

EX2 =

∫ ∞

0
x2

λt

Γ(t)
xt−1e−λxdx =

λt

Γ(t)

∫ ∞

0

(
y

λ

)t+1

e−y
1

λ
dy =

Γ(t+ 2)

λ2Γ(t)
=
t(t+ 1)

λ2
.

VarX =
t(t+ 1)

λ2
− t2

λ2
=

t

λ2
.

1.32. Theorem (Convolution of Exponentials).

(a) ∗nExponential(λ) d
= Gamma(n, λ);

(b) Gamma(n, λ) ∗Gamma(m,λ)
d
= Gamma(n+m,λ) for m,n ∈ N;

(c) In general, Gamma(t, λ) ∗Gamma(s, λ)
d
= Gamma(t+ s, λ).

Proof. First (a), which we prove by induction. By comparison of densities, Exponential(λ) = Gamma(1, λ).
Now we aim to show that Gamma(n, λ) ∗ Exponential(λ) = Gamma(n+ 1, λ). Indeed,

f∗(a) =
∫ ∞

−∞
fX(a− x)fY (x)dx =

∫ a

0
λe−λ(a−x)

λn

(n − 1)!
xn−1e−λxdx =

λn+1

(n− 1)!
e−λa

∫ a

0
xn−1dx

=
λn+1

(n− 1)!
e−λa

1

n
xn

∣∣a
0
=
λn+1

n!
ane−λa.

This proves (a). (b) is a corollary of (a), noting that Gamma(n, λ) ∗Gamma(m,λ) = ∗m+nExponential(λ).
No proof of (c) given. �



PROBABILITY 3 REVISION NOTES 11

1.33. Definition (χ2 distribution). Let X ∼ N (0, σ2). Then X2 ∼ χ2
1. How is this defined?

Fχ2
1
(a) = P(X2 ≤ a) = P(−√a ≤ X ≤ √a) = P(−√a/σ ≤ Z ≤ √a/σ) = Φ(

√
a/σ) − (1− Φ(

√
a/σ))

= 2Φ(
√
a/σ)− 1.

Differentiating with respect to a to find the density,

fχ2
1
(a) =

d

da

[
2Φ(
√
a/σ)− 1

]
= 2ϕ

(√
a

σ

)
1

2σ
√
a
=

1√
2πaσ2

e−
a

2σ2 .

I claim that this is equal to Gamma(t, λ) for some λ and some t. In order to find these we compare terms.
Set

1√
2πaσ2

e−
a

2σ2 ≡ λt

Γ(t)
at−1e−λa.

Clearly then we must have

• λ ≡ 1/2σ2;

• t ≡ 1/2.

Thus it remains to show that Γ(1/2) =
√
π. Since these are two proper densities, this is surely the case.

Moreover,

X2 ∼ χ2
1
d
= Gamma

(
1

2σ2
,
1

2

)
.

1.34. Theorem (Convolution of χ2
1). Let X1,X2, . . . ∼ N (0, σ2) be independent. Then X2

i ∼ χ2
1. Then

X2
i ∼ Gamma(1/2, 1/2σ2) and therefore

X2
1 + · · ·+X2

n ∼ Gamma(n/2, 1/2σ2).

When σ = 1 we call this a χ2
n distribution.

1.35. Remark. By the strong law of large numbers and since a Gamma(n, λ) is the sum of n Exponential(λ)
distributions; each with mean 1/λ,

Gamma(n, λ)

n

a.s.−−→ 1

λ
.

Similarly, by the central limit theorem,

λX − n√
n

d−→ N (0, 1).

2. The Poisson Process

2.1. Definition (Poisson process). A Poisson process with rate λ > 0 is a continuous time counting process
N(t) such that

(a) N(t) is of time homogeneous and independent increments;

(b) N(t) = #{marks in the interval [0, t)} ∼ Poisson(λt).

2.2. Theorem. Let N(t) be a counting process where the time between events are independent
Exponential(λ) so that the time until the nth event Tn is a Gamma(n, λ) random variable, then N(t) is
a Poisson process.
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Proof. Note that P(N(t) ≥ n) = P(Tn < t). For k ≥ 1,

P(N(t) = k) = P(N(t) ≥ k)− P(N(t) ≥ k + 1)

= P(Tk < t)− P(Tk+1 < t)

=

∫ t

0

λk

(k − 1)!
xk−1e−λxdx−

∫ t

0

λk+1

k!
xke−λxdx

︸ ︷︷ ︸
u=xk, dv

dx
=e−λx

=

∫ t

0

λk

(k − 1)!
xk−1e−λxdx+

λk+1

k!

xke−λx

λ

∣∣∣∣
t

0

−
∫ t

0

λk+1

k!

kxk−1e−λx

λ
dx

=
(λt)ke−λt

k!
.

For k = 0 it is trivial. Hence N(t) ∼ Poisson(λt); as required. �

3. Generating functions

3.1. Definition (Probability generating function). We define the probability generating function of a random
variable X to be the function P : R→ R, defined by

P (s) = EsX .

Throughout this section our random variables will be non-negative integer valued.

3.2. Proposition (Properties of generating functions).

(a) P (1) = P(X <∞). If X has a proper distribution then this is 1, otherwise P (1) < 1.

Proof. Indeed P (s)
∣∣
s=1

=
∑∞

n=0 s
np(n)

∣∣
s=1

=
∑∞

n=0 p(n). �

(b) The radius of convergence R ≥ 1.

Proof. By (a), P (s) <∞ for all |s| < 1. Hence R ≥ 1. �

(c) P (0) = P(X = 0).

Proof. Indeed P (s)
∣∣
s=0

=
∑∞

n=0 s
np(n)

∣∣
s=0

= p(0) +
∑∞

n=1 s
np(n)

∣∣
s=0

= p(0). �

(d) ( dds)
kP (s)

∣∣
s=0

= k!p(k). In particular, the distribution of a random variable is uniquely deter-
mined by its probability generating function.

Proof.
(
d

ds

)k
P (s) =

(
d

ds

)k ∞∑

n=0

snp(n) =
∞∑

n=0

(
d

ds

)k
snp(n) =

∞∑

n=0

n(n− 1) · · · (n− k + 1)sn−kp(n)

=

k−1∑

n=0

n(n− 1) · · · (n− k + 1)sn−kp(n)

︸ ︷︷ ︸
all terms =0

+k!p(k) +

∞∑

n=k+1

n(n− 1) · · · (n− k + 1)sn−kp(n).

Evaluating at s = 0 yields the result. Thus there is a one-to-one correspondence between P (s)
and {p(n)}∞n=0. Indeed p(k) is equal to the kth coefficient of the Taylor series of P expanded
about 0. �

(e) ( dds)
kP (s)

∣∣
s=1

= E
[
X(X − 1) · · · (X − k + 1)

]
. We call this the kth factorial moment.
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Proof. As above,

(
d

ds
)kP (s)

∣∣
s=1

=
∞∑

n=0

n(n− 1) · · · (n − k + 1)sn−kp(n)
∣∣
s=1

= E
[
X(X − 1) · · · (X − k + 1)

]
. �

3.3. Theorem. A continuous function P : [0, 1) → R is of the form P (s) =
∑∞

n=0 p(n)s
n with p(n) ≥ 0

if and only if for all n ≥ 0 and for all s ∈ (0, 1), P (n)(s) exists and is non-negative. Moreover, P
is the generating function of a probability distribution if P (1) = 1 such that

∑∞
n=0 p(n) = 1; thus the

coefficients form a probability distribution on Z+.

3.4. Proposition. Let X and Y be independent non-negative integer valued random variables and let
PX and PY be the generating functions of X and Y respectively. Then

PX+Y (s) = PX(s)PY (s).

Proof.

PX+Y (s) = E(sX+Y ) = E(sXsY ) = EsXEsY = PX(s)PY (s).

The penultimate equality follows from the independence of X and Y . �

We can use this result to determine the distribution of a convolution of two independent random variables
– this saves using the convolution formula.

3.5. Example. X ∼ Poisson(λ) and Y ∼ Poisson(µ) independent. Then

PX(s) = EsX =

∞∑

n=0

sn
e−λλn

n!
= e−λeλs = eλ(s−1).

Hence the convolution has generating function

PX+Y (s) = PX(s)PY (s) = e(λ+µ)(s−1),

which in turn implies that X + Y ∼ Poisson(λ+ µ).

3.6. Theorem (Random number of summands). Let X1,X2, . . . be a sequence of i.i.d. random variables
and let Y be a non-negative integer valued random variable, jointly independent of the Xi’s. Let Z :=∑Y

i=1Xi, then

(a) PZ(s) = PY [PX1(s)]; that is, PZ = PY ◦ PX1 ;

(b) EZ = EY · EX1;

(c) VarZ = [EX1]
2VarY + EYVarX1.

Proof. For (a), we use the law of iterated expectation (aka. Tower Rule or Law of Total Expectations),
properties of the conditional expectation and independence.

PZ(s) = Es
∑Y

i=1Xi = E

[
E

( Y∏

i=1

sXi

∣∣∣∣Y
)]

= E

[ Y∏

i=1

E(sXi |Y )

]
= EPX1(s)

Y = PY (PX1(s)).
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For (b) use that P ′(1) = EX and the chain rule.

P ′
Z(s) = P ′

Y (PX1(s))× P ′
X1

(s).

Evaluate at s = 1 and use that PX1(1) = 1. For (c) note that

P ′′
Z(s) = P ′

Y (PX1(s))× P ′′
X1

(s) + P ′
X1

(s)× P ′′
Y (PX1(s))P

′
X1

(s).

Hence
E[Z(Z − 1)] = P ′′

Z(1) = EY E[X1(X1 − 1)] + (EX1)
2E[Y (Y − 1)].

Moreover,

VarZ = EZ2 − (EZ)2

= E[Z(Z − 1)] + EZ − (EZ)2

= EY E[X1(X1 − 1)] + (EX1)
2E[Y (Y − 1)] + EX1EY − (EX1EY )2

= EY EX2
1 − EY EX1 + (EX1)

2EY 2 − (EX1)
2EY + EX1EY − (EX1EY )2

= [EX1]
2VarY + EYVarX1. �

3.7. Example (Bernoulli thinning of Poisson process). Let Y ∼ Poisson(λ). Each arrival is independently

a success with probability p, i.e., let Xi ∼ i.i.d. Bernoulli(p), jointly independent of Y , and let Z =
∑Y

i=1Xi

be the number of successes. Then PX1(s) = ps+ q and so

PZ(s) = eλ(ps+q−1) = eλp(s−1)

and hence Z ∼ Poisson(λp).

4. Galton-Watson (Branching) Process

4.1. Definition. Let {Zn,j}∞n,j=1 have non-negative integer distribution, be i.i.d. and have generating func-

tion P (s). Let

• Z0 = 1;

• Zn = Zn,1 + Zn,2 + · · · + Zn,Zn−1 .

Then Zn is the population size at time n. Zn,j is the number of offspring the jth member of generation
n− 1 has.

4.2. Proposition.

PZn = ◦nP.

Proof. Follows from previous on generating functions of random summands:

PZn(s) = (PZn−1 ◦ P )(s) = · · · = (PZ0 ◦ P ◦ · · · ◦ P︸ ︷︷ ︸
×n

)(s) = (◦nP )(s)

since Z0 = 1 implies PZ0(s) = s. �

4.3. Definition. Let π be the probability that the population goes extinct, i.e., that at some point in time
all members of the previous generation have no offspring. If π < 1 then with some positive probability the
population never dies out.

4.4. Theorem (Probability of extinction). Assume p(0) = P(Zn,j = 0) > 0; p(0) < 1. Define m :=
EZn,j. Then (if we assume the offspring distribution is proper),

π =





1 if m < 1 (subcritical case),

1 if m = 1 (critical case),

s0 if m > 1 (supercritical case),
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where s0 is such that P (s0) = s0; 0 < s0 < 1.

Proof. Note that {Zn = 0} is an increasing sequence of events; hence

π = P

( ∞⋃

n=1

{Zn = 0}
)

= lim
n→∞

P(Zn = 0).

But P(Zn = 0) = PZn(0) = (◦nP )(0). Graphical properties:

• P is convex on [0, 1] (in fact all generating functions are, as they are positive linear combinations of
convex functions);

• P (1) = 1;

• P ′(1) = m;

• P (0) = P(Zn,j = 0);

• by the theorem not proved on generating functions P (k)(s) exists and is non-negative for all k and
all s ∈ (0, 1).

Hence we sketch the generating function P for the two cases m ≤ 1 and m > 1. �

• •1 1

1 1

P (s) P (s)

s s0 0

P (0)

PZ1
(0)

PZ2
(0)

PZ3
(0)

P (0)

PZ1
(0)

PZ2
(0)

m ≤ 1 m > 1

•

s0

4.5. Remark. When m < 1 [SUBCRITICAL] we have exponential decay in the limit. When m = 1 [CRITI-
CAL] we might not.

4.6. Corollary. From the graphs can also see that for all s ∈ (0, 1)

(◦nP )(s) = PZn(s)→
{
1 if m ≤ 1,

s0 if m > 1.

Furthermore, for all k > 0,

P(Zn = k) =
1

k!

(
d

ds

)k
PZn(s)

∣∣∣∣
s=0

→ 0.

No formal proof, but intuitive since PZn converges to a constant function.

4.7. Example (Pessimistic geometric offspring distribution). Zn,j ∼ PessGeom(p). EZn,j =
1
p − 1 = q

p . Fix
q
p > 1 i.e. q > p so that we are in the SUPERCRITICAL case – this is the case when there is no extinction

with positive probability.

P (s) = EsZn,j =

∞∑

i=0

qipsi =
p

1− qs.
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Solve for s0 such that P (s0) = s0.

p

1− qs0
= s0 ⇐⇒ qs20 − s0 + p = 0 ⇐⇒ s0 =

1±√1− 4pq

2q
.

Note that 1− 4pq = 1− 4p(1 − p) = 1− 4p + 4p2 = (1− 2p)2. Hence

s0 =
1± |1− 2p|

2q
=

1± (1− 2p)

2q

as | · | becomes irrelevant with ±.
+ =⇒ s0 = 1, − =⇒ s0 =

p

q
.

By the theorem, the extinction probability is the smallest root. Since p/q < 1, π = p/q. Furthermore, the
survival probability

θ = 1− π = 1− p

q
= 1− p− 1 + 1

1− p = 2− 1

1− p
for p < 1/2 and for 0 for p ≥ 1/2 [CRITICAL and SUBCRITICAL cases].

In fact, we can check this in the CRITICAL case p = q,

P (s) =
p

1− qs =
1

2− s,

P (P (s)) =
1

2− 1
2−s

=
2− s
3− 2s

,

P (P (P (s))) =
1

2− 2−s
3−2s

=
3− 2s

4− 3s
.

Conjecture that

(◦nP )(s) = n− (n− 1)s

(n+ 1)− ns.

Suppose that it is true for n. Then we show it is for n+ 1.

(◦n+1P )(s) = P ((◦nP )(s)) = 1

2− n−(n−1)s
(n+1)−ns

=
(n+ 1)− ns

2(n+ 1)− 2ns− n+ (n− 1)s
=

(n+ 1)− ns
(n+ 2)− (n+ 1)s

.

Hence

P(Zn = 0) = PZn(0) = (◦nP )(0) = n

n+ 1
→ 1.

So π = limn→∞ P(Zn = 0) = 1. Note that P(Zn > 0) = 1− n
n+1 ∼ 1

n and hence the decay is power law and
not exponential as in the SUBCRITICAL case.

4.8. Theorem. Let X be the total number of individuals that ever existed in a branching process. Let
X have generating function Q. Then

Q(s) =

(
s

P (s)

)−1

←− function inverse!

Proof. Z1 is the number of offspring the initial member of the population (Z0 = 1) has. Hence we may
view the subsequent members of the population as members of Z1 i.i.d. branching processes. Since all the
branching processes are i.i.d., each of these has X members also (in distribution, not deterministically).
Hence

X
d
= 1 +

Z1∑

i=1

Xi where Xi
d
= X, i.i.d., and independent of Z1.

Hence

Q(s) = EsX = sEs
∑Z1

i=1Xi = sP (Q(s)).
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This comes from generating function of a random summand (earlier). Q is an increasing function on [0, 1]
hence is bijective and so Q−1 exists on [0, 1]. Let y = Q(s). Then

y = sP (y) ⇐⇒ s =
y

P (y)
=⇒ Q−1(y) =

y

P (y)
. �

5. Simple random walks on Z

5.1. Definition. Let

Xi =

{
+1 w.p. p,

−1 w.p. q.

be independent and

Sn =

n∑

i=1

Xi

be the position of the walker at time n having started at 0.

5.2. Definition (Level 1 hitting time). Define τ+ = inf{n ≥ 1 : Sn = 1} to the first time the random walk
reaches +1. We call this the level 1 hitting time. Let τ+ have generating function P+.

5.3. Theorem (Level 1 hitting time).

P+(s) =
1−

√
1− 4pqs2

2qs
.

P(walker ever reaches level 1) = P(τ+ <∞) =

{
p
q if p < q ⇐⇒ p < 1

2 ,

1 if p ≥ q ⇐⇒ p ≥ 1
2 .

Eτ+ =

{
∞ if p ≤ q ⇐⇒ p ≤ 1

2 ,
1
p−q if p > q ⇐⇒ p > 1

2 .

Hence Eτ+ →∞ as pց 1
2 .

Proof.

P+(s) = Esτ
+

= E(sτ
+ |X1 = 1︸ ︷︷ ︸

Here τ+=1

)P(X1 = 1) + E(sτ
+ |X1 = −1︸ ︷︷ ︸

(τ+|X1=−1)
d
=1+τ+1 +τ+2 where τ+i

d
=τ+ and independent

)P(X1 = −1)

= sp+ s[P+(s)]2q.

By the quadratic formula

P+(s) =
1±

√
1− 4pqs2

2qs
.

We cannot take the solution with a + since this blows up for s→ 0. This proves the first part.

Now we compute P(τ+ <∞).

P(τ+ <∞) = P+(1) =
1−√1− 4pq

2q
=

1− |1− 2p|
2q

=

{
1−(1−2p)

2q = p
q when 1− 2p > 0 ⇐⇒ p < 1

2
1+(1−2p)

2q = 1 when 1− 2p ≤ 0 ⇐⇒ p ≥ 1
2 .

Hence if p ≥ q, p ≥ 1/2 the walk reaches +1 almost surely. If p < q, p < 1/2 then the walk reaches +1 with
probability p/q < 1.

For the final part, if p < q then P(τ+ =∞) > 0 and so Eτ+ =∞.
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Now suppose p ≥ q. Then

Eτ+ =
d

ds
P+(s)

∣∣∣∣
s=1

=
2qs × (−1

2 )(1− 4pqs2)−1/2(−8pqs)− (1−
√

1− 4pqs2)× 2q

4q2s2

∣∣∣∣
s=1

=
2p

|1− 2p| −
1− |1− 2p|

2q

=
2p

2p − 1
− 2− 2p

2q

=
2p

2p − 1
− 1

=
1

2p − 1

=
1

p− q .

Note that this ր∞ as pց 1
2 . �

5.4. Theorem (Level -1 hitting time). Let τ− be the first time the walker hits level −1. Then by simply
reversing the roles of p and q we have

P−(s) =
1−

√
1− 4pqs2

2ps
.

P(walker ever reaches level -1) = P(τ− <∞) =

{
q
p if q < p ⇐⇒ q < 1

2 ,

1 if q ≥ p ⇐⇒ q ≥ 1
2 .

Eτ− =

{
∞ if q ≤ p ⇐⇒ q ≤ 1

2 ,
1
q−p if q > p ⇐⇒ q > 1

2 .

Hence Eτ− →∞ as q ց 1
2 .

5.5. Theorem (First return time to 0). Let τ0 = inf{n ≥ 1 : Sn = 0}. Let P 0 be the generating function
of τ0. Then

P 0(s) = 1−
√

1− 4pqs2.

Furthermore

P(τ0 <∞) =

{
2p if p ≤ q,
2q if q < p.

Proof.

P 0(s) = Esτ
0

= E(sτ
0 |X1 = 1)P(X1 = 1) + E(sτ

0 |X1 = −1)P(X1 = −1)
= psP−(s) + qsP+(s)

= ps
1−

√
1− 4pqs2

2ps
+ qs

1−
√

1− 4pqs2

2qs

= 1−
√

1− 4pqs2.



PROBABILITY 3 REVISION NOTES 19

For the next part,

P(τ0 <∞) = P 0(1) = 1− |1− 2p| = 1− |p− q| =
{
2p if p ≤ q,
2q if q < p.

Finally, when p 6= q then τ0 =∞ with some positive probability and therefore Eτ0 =∞. When p = q = 1/2,

d

ds
P 0(s)

∣∣∣∣
s=1

=
d

ds

[
1−

√
1− s2

]∣∣∣∣
s=1

= −1

2
(1− s2)−1/2(−2s)

∣∣∣∣
s=1

=∞ �

In all cases the expected time to return to 0 is infinite.

• p = q =⇒ τ0 <∞ almost surely, we say NULL RECURRENT.

• p 6= q =⇒ τ0 =∞ with some positive probability, we say TRANSIENT.

5.6. Remark (Relation to branching process). Let a branching process have offspring distribution

Zn,j =

{
0 w.p. q

2 w.p. p.

Then P (s) = q + ps2. Let Q be the generating function of the total number whoever existed. Then

Q(s) = sP (Q(s))

= s× [q + pQ(s)2] ⇐⇒ psQ(s)2 −Q(s) + qs = 0.

By the quadratic formula

Q(s) =
1±

√
1− 4pqs2

2ps
.

Again we take the − so that it doesn’t blow up when s → 0. Hence X is equal in distribution to the level
−1 hitting time. Why? Each birth can be viewed as increasing the number of branches by ±1, the same as
a simple random walk.

6. Limit distributions, Continuity Theorem (using generating functions)

6.1. Definition. If Xn is a sequence of non-negative integer valued random variables then we say that they
converge in distribution (weakly) to X if for all k ≥ 0,

P(Xn = k)→ P(X = k) as n→∞.

6.2. Theorem (Continuity theorem). Let Xn be a sequence of non-negative integer valued and finite
(proper) random variables. Then

lim
n→∞

P(Xn = k) =: p(k)

exists for all k ≥ 0 if and only if for all s ∈ (0, 1)

lim
n→∞

PXn(s) =: P (s)

exists. In this case, P (s) =
∑∞

n=0 s
np(k).
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Proof. Suppose that limn→∞ P(Xn = k) = p(k) as n → ∞. Let P (s) be the generating function of the
limiting distribution.

|PXn(s)− P (s)| =
∣∣∣∣

∞∑

k=0

(P(Xn = k)− p(k))sk
∣∣∣∣

≤
∞∑

k=0

|P(Xn = k)− p(k)|sk

=
M∑

k=0

|P(Xn = k)− p(k)| sk︸︷︷︸
<1

+
∞∑

k=M+1

≤1 as worst case scenario︷ ︸︸ ︷
|P(Xn = k)− p(k)| sk

≤
M∑

k=0

|P(Xn = k)− p(k)|+
∞∑

k=M+1

sk.

Since the sum on the right is convergent, the tail converges to 0. Hence there exists M such that the right
hand term is less than a fixed ε > 0. So

|PXn(s)− P (s)| ≤
M∑

k=0

|P(Xn = k)− p(k)|+ ε.

As limn→∞ P(Xn = k) = p(k), there exists sufficiently large n such that the remaining sum is less than ε.
Hence we have the desired convergence.

Now suppose that for all s ∈ (0, 1) we have limn→∞ PXn(s) = P (s). Write pn(k) = P(Xn = k).

(1) Since (pn(1)) is a sequence in compact [0, 1] there exists a subsequence (p1,n(1)) of (pn(1)) such that
p1,n(1) converges.

(2) Since (p1,n(2)) is a sequence in compact [0, 1] there exists a subsequence (p2,n(2)) of (p1,n(2)) such
that p2,n(2) converges.

...

(k) Since (pk−1,n(k)) is a sequence in compact [0, 1] there exists a subsequence (pk,n(k)) of (pk−1,n(k))
such that pk,n(k) converges.

Then pn,n(k) converges for all k. Why?

(pn,n(k)) = (p1,1(k), . . . , pk,k(k), pk+1,k+1(k), . . .︸ ︷︷ ︸
subsequence of pk,k(k), which converges

).

Hence there exists a sequence nj such that limj→∞ pnj
(k) exists.

Fact : If every convergent subsequence of a bounded sequence converges to the same limit, then the sequence
itself converges and to the same limit as the subsequences.

Proof of the fact. By contradiction, suppose the sequence is not convergent. Then its liminf and limsup
are finite but different, and there are respective subsequences that converge to these, which contradicts the
assumption.

Fix nj as above and let another (increasing) sequence n′j be such that limj→∞ pn′
j
(k) exists. Claim:

lim
j→∞

pn′
j
(k) = lim

j→∞
pnj

(k).

Indeed, this completes the proof since by the fact above, the whole sequence therefore converges to the same
limit as the subsequence pnj

(k) for all k ≥ 0.

Proof of the claim. For all s ∈ (0, 1) as limn→∞ PXn(s) = P (s) we have that PXnj
(s)→ P (s) and PXn′

j

(s)→
P (s). But

PXnj
(s)→

∞∑

k=0

[
lim
j→∞

pnj
(k)

]
sk PXn′

j

(s)→
∞∑

k=0

[
lim
j→∞

pn′
j
(k)

]
sk.
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Hence
∞∑

k=0

[
lim
j→∞

pnj
(k)

]
sk =

∞∑

k=0

[
lim
j→∞

pn′
j
(k)

]
sk

by the uniqueness of limits in R. Moreover, the limits agree by the uniqueness of moment generating
functions. �

6.3. Theorem (Poisson Approximation of Binomial). Let Xn ∼ Binomial(n, p(n)) such that np(n)→ λ

as n→∞. Then Xn
d−→ X where X ∼ Poisson(λ).

Proof. By the continuity theorem if the generating functions converge then the distribution functions con-
verge. Note that

PXn(s) =

n∑

r=0

(
n

r

)
prqn−rsr = (q + ps)n = (1 + p(n)(s − 1))n =

(
1 +

np(n)(s− 1)

n

)n
→ eλ(s−1). �

6.4. Theorem (Law of rare events). Consider the triangular array {Xn,k : n ∈ N, 1 ≤ k ≤ n} which
looks like

{ X1,1,
X2,1, X2,2,
X3,1, X3,2, X3,3, . . .}

Let Xn,k ∼ Bernoulli(pn,k) be independent and such that

• max1≤k≤n pn,k → 0 as n→∞, and,

• ∑n
k=1 pn,k → λ ∈ (0,∞) as n → ∞, that is, the expected number of successes in each row goes

to λ,

then
∑n

k=1Xn,k
d−→ Poisson(λ).

Proof. Note that this is a generalisation of the previous theorem, where in that case eachXn,k ∼ Bernoulli(p).
We show that the generating function converges to that of a Poisson then invoke the continuity theorem
which then implies that it converges weakly to a Poisson random variable.

Pn(s) = Es
∑n

k=1Xn,k =

n∏

k=1

PXn,k
(s) =

n∏

k=1

(1− pn,k + pn,ks) =

n∏

k=1

(1− (1− s)pn,k).

Taking log of both sides,

logPn(s) =

n∑

k=1

log(1− (1− s)pn,k).

Note that

log(1− x) = −
∞∑

n=1

xn

n
= −x−

∞∑

n=2

xn

n
,

and therefore for x > 0

log(1− x) < −x
and

log(1− x) > −x−
∞∑

n=2

xn =
for x<1

−x− x2 1

1− x >
for x<1/2

−x− 2x2.

Hence for x ∈ (0, 1/2),

−x− 2x2 < log(1− x) < −x.
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Plugging this in above we get

(s− 1)λ← −
n∑

k=1

(1− s)pn,k −
n∑

k=1

2(1− s)2p2n,k < log Pn(s) < −
n∑

k=1

(1− s)pn,k =
n∑

k=1

(s− 1)pn,k → (s− 1)λ.

On the left this comes from the fact that
n∑

k=1

p2n,k ≤
n∑

k=1

max
1≤j≤n

pn,jpn,k → 0× λ. �

7. Weak law of large numbers

7.1. Theorem (Markov’s inequality). Let X ≥ 0 be a random variable; c > 0. Then

P(X ≥ c) ≤ EX

c
.

Proof. Note that X ≥ c1{X≥c}. Taking expectations, the result follows immediately. �

7.2. Theorem (Chebyshev’s inequality). Let X (not necessarily non-negative) be a random variable
with VarX = σ2 <∞; c > 0. Then EX exists and is finite and

P(|X − EX| ≥ c) ≤ VarX

c2
.

Proof. Using Markov’s,

P(|X − EX| ≥ c) = P(|X − EX|2 ≥ c2) ≤ E|X − EX|2
c2

=
VarX

c2
. �

7.3. Theorem (Chernoff’s inequality). Let X be a (not necessarily non-negative) random variables;
c ∈ R. Then

P(X ≥ c) ≤ inf
λ>0

e−λcMX(λ).

Proof. By Markov’s

P(X ≥ c) = P(eλX ≥ eλc) ≤ EeλX

eλc
= e−λcMX(λ).

Since this holds for all λ > 0 (for which eλx is an increasing function) we can take infinum. �

7.4. Theorem (Weak law of large numbers). Let X1,X2, . . . be a sequence of i.i.d. random variables
with finite mean EX1 = µ <∞. Then

1

n

n∑

i=1

Xi
P−→ µ.

Proof. This proof requires an assumption that EX2 <∞ also. The theorem is true without this assumption
and is a corollary of the strong law of large numbers (later).
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Since E( 1n
∑n

i=1Xi) = µ and by Chebyshev’s,

P

(∣∣∣∣
1

n

n∑

i=1

Xi − µ
∣∣∣∣ ≥ ε

)
≤ Var( 1n

∑n
i=1Xi)

ε2
=

1
n2 × nσ2

ε2
→ 0. �

8. Stirling’s formula, de Moirve-Laplace Central Limit Theorem

This bit is available as a printed pdf on the unit homepage.

9. Measure Theory

9.1. Definition (Power set). The power set P(Ω) of a set Ω is the set of all of its subsets P(Ω) = {A : A ⊆
Ω}.

9.2. Definition (Algebra). Let Ω be a set. A set A ⊆ P(Ω) (i.e., A is a set of subsets of Ω) is an algebra if

(a) Ω ∈ A;
(b) For all A,B ∈ A, A ∪B ∈ A;
(c) For all A ∈ A, Ω\A ∈ A.

9.3. Definition (Finitely additive measure). A set function µ : A → [0,∞] defined on an algebra A is a
finitely additive measure on A if for all disjoint A,B ∈ A (i.e. A ∩B = ∅), µ(A ∪B) = µ(A) + µ(B).

9.4. Definition (σ-algebra). Let Ω be a set. A set F ⊆ P(Ω) (F is a set of subsets of Ω) is a σ-algebra if

(a) Ω ∈ F ;
(b) For any countable collection of sets A1, A2, A3, . . . ∈ F ,

⋃∞
n=1An ∈ F ;

(c) For all A ∈ F , Ω\A ∈ F .
Note that (b) and (c) imply that for any countable collection of sets A1, A2, A3, . . . ∈ F ,

⋂∞
n=1An ∈ F by

De Morgan’s law.

If Ω is a set and F a σ-algebra on Ω then we say that (Ω,F) is a measurable space.

9.5. Definition (Measure). A set function µ : F → [0,∞] is a measure on F if it is σ-additive. That is to
say, for any countable collection of sets A1, A2, A3, . . . ∈ F which is pairwise disjoint (Ai ∩ Aj = ∅ for all
i 6= j), we have µ(

⋃∞
n=1An) =

∑∞
n=1 µ(An).

9.6. Definition. A probability measure is a measure by the above definition P : F → [0,∞] with the
boundary condition P(Ω) = 1. Note that this implies P(∅) = 0 by the σ-additivity property.

9.7. Theorem (Continuity of probability and more). Let A be an algebra and P : A → [0,∞] a finitely
additive measure such that P(Ω) = 1. Then the following definitions are equivalent.

(a) P is a measure, that is, it satisfies the σ-additivity property;

(b) If An is an increasing sequence in A, i.e., An ⊆ An+1 and An ∈ A for all n ∈ N then whenever⋃∞
n=1An ∈ A (this is not certain as A is not necessarily a σ-algebra) we have

lim
n→∞

P(An) = P

( ∞⋃

n=1

An

)
= P( lim

n→∞
An),

where we define
⋃∞
n=1An =: limn→∞An;



PROBABILITY 3 REVISION NOTES 24

(c) If An is a decreasing sequence in A, i.e., An+1 ⊆ An and An ∈ A for all n ∈ N then whenever⋂∞
n=1An ∈ A we have

lim
n→∞

P(An) = P

( ∞⋂

n=1

An

)
= P( lim

n→∞
An),

where we define
⋂∞
n=1An =: limn→∞An;

(d) If An is a decreasing sequence with
⋂∞
n=1An = limn→∞An = ∅ then limn→∞ P(An) = 0(= P(∅)).

Proof. We first show that (a) implies (b). Let B1 = A1, Bn = An\An−1 for all n ≥ 2. Then {Bn}∞n=1 satisfies⋃∞
n=1Bn =

⋃∞
n=1An and Bi ∩ Bj = ∅ for all i 6= j. So {Bn}∞n=1 forms a disjoint partition of

⋃∞
n=1An. By

the σ-additivity assumption in (a) we have that

P(

∞⋃

n=1

An) = P(

∞⋃

n=1

Bn) =

∞∑

n=1

P(Bn) = lim
n→∞

n∑

k=1

P(Bk) = lim
n→∞

P(

n⋃

k=1

Bk) = lim
n→∞

P(An).

Now we show (b) implies (c). Since An is a decreasing sequence, Ω\An is an increasing sequence. Moreover,

P(
∞⋂

n=1

An) = 1− P(
∞⋃

n=1

Ω\An) = 1− lim
n→∞

P(Ω\An) = lim
n→∞

P(An).

(c) implies (d) trivially, it is simply a special case. It remains to show that (d) implies (a), i.e., that if An is a
decreasing sequence with

⋂∞
n=1An = limn→∞An = ∅ then limn→∞ P(An) = 0 implies P has the σ-additivity

property.

Take any disjoint family of sets {Ak}∞k=1. Then by finite additivity,

∞∑

k=1

P(Ak) = lim
n→∞

n∑

k=1

P(Ak) = lim
n→∞

P(
n⋃

k=1

Ak) = lim
n→∞

[P(
∞⋃

k=1

Ak)− P(
∞⋃

k=n+1

Ak)].

Now
⋃∞
k=n+1Ak is a decreasing sequence in n where

⋂∞
n=1

⋃∞
k=n+1Ak = ∅. This is because if ω ∈

⋃∞
k=n+1Ak

then ω ∈ AN for unique N (by disjointness of the family). Hence ω is not in the intersection of all tail
unions. By (c), P(

⋃∞
k=n+1Ak)→ 0. Moreover, σ-additivity holds. �

9.8. Remark. If An is an increasing sequence then P(An) is an increasing sequence. Indeed this is because
An ⊆ An+1 implies that An+1 = An+1\An ∪ An. By the σ-additivity of P we have that P(An+1) =
P(An+1\An) + P(An) ≥ P(An). Moreover P(An)ր P(limn→∞An).

This applies similarly to decreasing sequences. If An is decreasing then P(An) is a decreasing sequence and
P(An)ց P(limn→∞An).

9.9. Definition (Probability space). A probability space is a triplet (Ω,F ,P) where Ω is any set, F is a
σ-algebra on Ω and P is a probability measure, that is a measure on F satisfying σ-additivity and normalised
such that P(Ω) = 1.

9.10. Lemma. Let A ⊆ P(Ω), i.e. A is a collection of subsets of Ω. Then there exists a smallest algebra
α(A) and a smallest σ-algebra σ(A) which contains every set of A. We refer to these as the algebra and
the σ-algebra generated by A respectively.

Sketch proof. Let α(A) and σ(A) be intersections of all algebras (respectively σ-algebras) which contain A.
It is easy to check that this too is an algebra (respectively σ-algebra). �
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9.11. Definition. On R we define the algebra

A :=

{ n⋃

k=1

(ak, bk] : 1 ≤ n <∞; a1 < b1 < a2 < b2 < · · · ; ak, bk ∈ R ∪ {−∞,∞}
}

which is the set of all finite unions of subintervals. Note that A is not a σ-algebra. Indeed (0, 1− 1/n] ∈ A
for all n ∈ N, however ∪∞n=1(0, 1 − 1/n] = (0, 1) /∈ A. We define the Borel σ-algebra B(R) := σ(A) to be
the smallest σ-algebra which contains all finite unions of subintervals of the reals. The members of B(R)
are called the Borel measurable sets of R and it is left as a remark that these contain any sets of suitable
interest.

Similarly we define B(Rn) to be the σ-algebra generated by all rectangle sets in Rn and B(R∞) to be the
σ-algebra generated by all cylinder sets of R∞. Note that R∞ is the set of all real valued sequences and a
cylinder set is of the form {(x1, . . . , xn) : n ∈ N;x1 ∈ (a1, b1]; . . . xn ∈ (an, bn]; ak < bk ∈ R ∪ {−∞,∞}}.
This again contains all sets of suitable interest. To name a few we mention

• {(xn) : limn→∞ xn exists and finite};
• {(xn) : supn∈N xn > a};
• {(xn) : lim infn→∞ xn > a}.

We can also define B(RT ) for some uncountable set T (think time, reals). This contains all functions X(t)
although we may possibly have to restrict attention to càdlàg functions; these are continuous on the right
and have a limit from the left.

9.12. Theorem (Carathéodory). Let A be an algebra on Ω; F = σ(A) the σ-algebra generated by A. If
µ is a σ-additive measure on A then there exists a unique extension of µ to the measurable space (Ω,F).

9.13. Definition (Lebesgue measure). Let A be the algebra (on [0, 1]) containing disjoint intervals of the
form (a1, b1] ∪ (a2, b2] ∪ · · · ∪ (ak, bk] ⊂ [0, 1]. Define the measure µ0 such that

µ0((a1, b1] ∪ (a2, b2] ∪ · · · ∪ (ak, bk]) =

k∑

i=1

(bi − ai).

It can be shown that µ0 is σ-additive. Then by Carathéodory’s extension theorem there exists a unique
measure µ on the σ-algebra generated by A, σ(A) such that µ = µ0 on A. We define this µ to be the
Lebesgue measure on ([0, 1],B[0, 1]).

9.14. Definition. A function X : (Ω,F) → R is F-measurable if for all B ∈ B(R), X−1(B) ∈ F . That is,
F is rich enough so that for any Borel measurable set B the set of ω ∈ Ω such that X(ω) ∈ B is in F .

9.15. Definition. A random variable is an F-measurable functionX : (Ω,F ,P)→ R where P is a probability
measure on F . Note that we require X to be F-measurable (sometimes denoted X ∈ mF) such that

P(X ∈ B) = P(X(ω) ∈ B) = P({ω ∈ Ω : X(ω) ∈ B}) = P(X−1(B)).

This is well defined since for all B ∈ B(R), X−1(B) ∈ F .
The (cumulative) distribution function of X is defined as

F : R→ [0, 1], F (x) = P({X ≤ x}) = P({ω ∈ Ω : X(ω) ≤ x}).
This makes perfect sense according to the above as {ω ∈ Ω : X(ω) ≤ x} = X−1

(
(−∞, x]

)
∈ F .

9.16. Corollary. Let X be a random variable. Then the distribution function of X is right continuous
for all x ∈ X(Ω), i.e.

F (ξ)ց F (x) as ξ ց x.
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Proof. Let xn ց x. Define An = {ω ∈ Ω : X(ω) ≤ xn}. Since xn is a decreasing sequence, An is a decreasing
sequence of events. Furthermore, limn→∞An = {ω ∈ Ω : X(ω) ≤ x}. Then by the continuity of probability,
F (xn) = P(An)ց P(limn→∞An) = F (x). �

9.17. Corollary. Let X have distribution function F . Then

lim
ξրx

F (ξ) = P(X < x).

Proof. Let xn be a sequence such that xn ր x. Then define An = {ω ∈ Ω : X(ω) ≤ xn}. Then
limn→∞ F (xn) = limn→∞ P(X ≤ xn) = limn→∞ P(An). Since xn is an increasing sequence, An ⊆ An+1, so
An is an increasing sequence. Hence limn→∞An =

⋃
nAn which is the event for at least one n, X(ω) ≤ xn,

which is true if and only if X(ω) < x. Hence limn→∞ F (xn) = P(limn→∞An) = P(X < x). �

9.18. Example. Let P((a, b]) = F (b) − F (a) where F is a cumulative distribution function. Then F is
continuous from the right. This measure is σ-additive on the algebra of sub-intervals of R. Furthermore, it
extends to the Lebesgue-Stieltjes measure on (R,B(R)), the measurable space R with the Borel σ-algebra
on R.

Intuition: To every distribution function there is an associated measure on R.

9.19. Remark (Linking a random variable with specified distribution to a probability space). Let F be a
distribution function, suppose for now that it is a continuous and strictly increasing distribution. Then
consider the probability space ([0, 1],B[0, 1], µ) where µ is the Lebesgue measure (which generalises the
notion of length). Note that here µ is also a probability measure.

Let X : Ω → R be defined by X(ω) = F−1(ω). Claim: X is B[0, 1] measurable and X has distribution
function given by F . Indeed for all A ∈ B(R) we have that X−1(A) = {ω ∈ [0, 1] : X(ω) ∈ A} = {ω ∈ [0, 1] :
F−1(ω) ∈ A} = F (A).

Furthermore µ(X ∈ (a, b]) = µ({ω ∈ Ω : X(ω) ∈ (a, b]}) = µ({ω ∈ Ω : F−1(ω) ∈ (a, b]}) = µ(F (a), F (b)] =
F (b)−F (a). The penultimate equality follows from the increasing property of F . Hence X has distribution
function given by X.

Also claim that if X is stochastically dominated by Y then on this space we have that X(ω) ≤ Y (ω) for
all ω ∈ Ω. X stoch. dom by Y implies that FY (x) ≤ FX(x) for all x ∈ R. We claim that this implies
F−1
X (ω) ≤ F−1

Y (ω) for all ω.

Suppose not, and there exists ω such that F−1
Y (ω) < F−1

X (ω). Let a := F−1
Y (ω). Then

FX(a) = FX(F
−1
Y (ω)) < FX(F

−1
X (ω)) = ω = FY (a).

The inequality follows from the fact that FX is increasing. This contradicts X stoch. dom by Y .

In the case where the distribution function is not continuous or not strictly increasing we define

X−(ω) = inf{x ∈ R : F (x) ≥ ω} and X+(ω) = inf{x ∈ R : F (x) > ω}
to be the first values for which F (x) is greater than of equal to (respectively strictly greater than) ω. Each
of these has distribution F and are equal almost surely.

9.20. Theorem. For all random variables X there exists a sequence of simple random variables
X1,X2, . . . such that |Xn| ≤ |X| almost surely and for all ω ∈ Ω we have Xn(ω)→ X(ω) as n→∞. A
simple random variable is of the form

Xn =
n∑

k=1

xk1Ak
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for a sequence of sets Ak ∈ F , xk ∈ R. That is, a simple random variable is constant on finitely many
measurable sets. If X ≥ 0 for all ω ∈ Ω then this sequence of simple random variables can be chosen to
satisfy Xn(ω)ր X(ω).

No proof but some intuition. In the discrete case this is obvious. There exists a finite partition of F for
which X is constant on each element; if not, then X /∈ mF . If this finest partition is finite, then X is
itself a simple random variable. If not (but the finest partition is countable), then define a sequence of
simple random variables, where Xn is the simple random variable taking constant values on the first n
sets in the finest partition. Then limn→∞

∑n
k=1 xk1Ak

(ω) = X(ω). Futhermore, if X is non-negative then∑n
k=1 xk1Ak

(ω) ≤∑n+1
k=1 xk1Ak

(ω) for all ω ∈ Ω and the sequence increases to X(ω).

In the uncountable case and non-discrete X we consider an analogue of this intuition.

9.21. Lemma. If X1,X2, . . . are random variables and for all ω ∈ Ω we have that limn→∞Xn(ω) exists
then the function X(ω) := limn→∞Xn(ω) is also a random variable. If X and Y are random variables
then so are X + Y , XY , X/Y and ϕ(X) for all measurable ϕ.

9.22. Definition (Expectation). We define expectation of a random variable in steps.

(1) We define E1A = P(A) for all A ∈ F .
(2) For a simple random variable Xn =

∑n
k=1 xk1Ak

we say EXn =
∑n

k=1 xkP(Ak).

(3) For a non-negative random variable X there exists a sequence of simple random variables Xn such
that Xn ր X. Then we define EX = limn→∞ EXn. Note that EXn ր EX.

(4) For a general random variable we let X = X+ − X− for some non-negative random variables X+

and X−. We then define EX = E(X+ −X−) = EX+ − EX−.

Remark. An equivalent way of describing expectations of real-valued random variables is integrating w.r.t.
the Lebesgue-Stieltjes measure introduced in Example 9.18:

EX =

∫

R

x dF (x), or Eg(X) =

∫

R

g(x) dF (x),

where F is the distribution function of the random variable X. Intuitively,
∑

i

g(xi)(F (xi+1)− F (xi))→
∫

R

g(x)dF (x)

with a proper refining of the mesh {xi}. The increment of F in the sum approximates the probability that
X is close to the point xi.

10. Toolbox

10.1. Lemma (The First Borel-Cantelli Lemma). Let A1, A2, . . . be a sequence of events such that∑∞
n=1 P(An) <∞, then

P

( ∞⋂

n=1

∞⋃

k=n

Ak

)
= 0.

10.2. Remark (Interpretation).
∑∞

n=1 P(An) is the expected number of Ans which are true because

E

∞∑

n=1

1An =

∞∑

n=1

P(An).
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So the expected number of An to occur is finite.
⋃∞
k=nAk is the event that after n, at least one of An, An+1, . . . occurs. Thus

⋂∞
n=1

⋃∞
k=nAk is the event that

for all n, one of the Ak, k ≥ n occurs. So
⋂∞
n=1

⋃∞
k=nAk is the event that infinitely many occur.

Notation.
⋂∞
n=1

⋃∞
k=nAk = limn→∞

⋃∞
k=nAk = lim supn→∞An.

Borel-Cantelli 1 in English: if the expected number of An to occur is finite, then the probability infinitely
many occur is 0; or finitely many occur a.s.

Proof.
⋃∞
k=nAk ⊆

⋃∞
k=n−1Ak so

⋃∞
k=nAk is a decreasing sequence in n. Thus

P

( ∞⋂

n=1

∞⋃

k=n

Ak

)
= lim

n→∞
P

( ∞⋃

k=n

Ak

)
≤ lim

n→∞

∞∑

k=n

P(Ak) = 0,

since the tail of a convergent sum converges to 0. �

10.3. Lemma (The Second Borel-Cantelli Lemma). Let A1, A2, . . . be a sequence of independent events
such that

∑∞
n=1 P(An) =∞, then

P

( ∞⋂

n=1

∞⋃

k=n

Ak

)
= 1.

10.4. Remark (Interpretation). Partial converse to Borel-Cantelli lemma 1, but requires that the events are
independent.
∑∞

n=1 P(An) =∞ so the expected number of An to occur is infinite.

Borel-Cantelli 2 in English: if the expected number of independent events An to occur is infinite, then
infinitely many occur a.s.

Special case: if an event occurs with constant probability p, then
∑∞

n=1 P(An) = ∞ and hence the event
occurs a.s. and infinitely often.

Proof. By De Morgan’s laws,

P
( ∞⋂

n=1

∞⋃

k=n

Ak

)
= 1− P

([ ∞⋂

n=1

∞⋃

k=n

Ak

]c)
= 1− P

( ∞⋃

n=1

∞⋂

k=n

Ack

)
.

Now
⋂∞
k=nA

c
k ⊆

⋂∞
k=n+1A

c
k so it is an increasing sequence. Thus

P

( ∞⋂

n=1

∞⋃

k=n

Ak

)
= 1− P

( ∞⋃

n=1

∞⋂

k=n

Ack

)
= 1− lim

n→∞
P

( ∞⋂

k=n

Ack

)
= 1− lim

n→∞

∞∏

k=n

P(Ack),

by independence. Furthermore, using that for all x ∈ R, 1− x ≤ e−x,

P

( ∞⋂

n=1

∞⋃

k=n

Ak

)
= 1− lim

n→∞

∞∏

k=n

P(Ack) = 1− lim
n→∞

∞∏

k=n

[1− P(Ak)]

≥ 1− lim
n→∞

∞∏

k=n

e−P(Ak) = 1− lim
n→∞

e−
∑∞

k=n P(Ak)︸ ︷︷ ︸
=0

,

since the tail of any infinite sum is also infinite. Hence P(
⋂∞
n=1

⋃∞
k=nAk) ≥ 1, which implies equality. �

10.5. Theorem (Monotone Convergence Theorem). Let X,Y,X1,X2, . . . be random variables. Then,

(a) If Xn ≥ Y for all n; EY > −∞ and Xn ր X as n→∞ then EXn → EX.
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(b) If Xn ≤ Y for all n; EY <∞ and Xn ց X as n→∞ then EXn → EX.

Proof. Proof of (a) only; (b) follows similarly.

Suppose Y ≡ 0, i.e., ∀ω ∈ Ω, Y (ω) = 0. Then as Xn ≥ 0 (seen in the measure theory section) for each Xk

there exists a sequence of simple (that is, constant on finitely many measurable sets) random variables X
(n)
k

such that X
(n)
k ր Xk as n→∞.

X1 ≤ X2 ≤ X3 ≤ · · · ≤ X
≤ ≤ ≤

...
...

...

≤ ≤ ≤

X
(3)
1 X

(3)
2 X

(3)
3

≤ ≤ ≤
X

(2)
1 X

(2)
2 X

(2)
3

≤ ≤ ≤
X

(1)
1 X

(1)
2 X

(1)
3

Define Z(n) := max1≤j≤nX
(n)
j . That is, Z(n) is the maximum value of the first n terms in the nth row from

the bottom in the table above.

Properties of Z(n):

• For all 1 ≤ k ≤ n we have X
(n)
k ≤ Z(n) ≤ Xn. The first inequality follows immediately from the

definition of Z(n), it is simply the maximum of such values, and is hence an upper bound. The second
inequality follows from chasing the column up within which the maximum lies and then across to

the value Xn. Formally, for some 1 ≤ k ≤ n, Z(n) = X
(n)
k ≤ Xk ≤ Xn.

• Z(n−1) ≤ Z(n). Why? Z(n−1) = max1≤j≤n−1X
(n−1)
j ≤ max1≤j≤n−1X

(n)
j ≤ Z(n). The inequality

follows from the fact that for all j ∈ N we have X
(n−1)
j ≤ X(n)

j , and then we maximise over a larger
domain.

Define Z := limn→∞Z(n), which exists because Z(n) is an increasing sequence (the limit may possibly be
infinite).

Since for all 1 ≤ k ≤ n we have X
(n)
k ≤ Z(n) ≤ Xn, taking n→∞ we see that

lim
n→∞

X
(n)
k ≤ lim

n→∞
Z(n) ≤ lim

n→∞
Xn =⇒ Xk ≤ Z ≤ X =⇒︸ ︷︷ ︸

k→∞
Z = X.

Note that, since the Z(n)s are simple (indeed they are a maximum of simple random variables), by the
definition of expectation of a limit simple random variables,

EX = EZ = E lim
n→∞

Z(n) = lim
n→∞

EZ(n) ≤ lim
n→∞

EXn.

Thus it remains to show that EX ≥ limn→∞ EXn. Since Xn ր X we have that Xn ≤ X for all n, which
implies that EXn ≤ EX. Hence,

lim
n→∞

EXn ≤ EX.

In the case where Y 6≡ 0 then we repeat the above analysis with Xn − Y which is a non-negative random
variable. �

10.6. Corollary. If Xn ≥ 0 then E
∑∞

n=1Xn =
∑∞

n=1 EXn.
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Proof. By definition we have
∑∞

n=1Xn = limN→∞
∑N

n=1Xn. Define YN =
∑N

n=1Xn. Since Xn ≥ 0, YN ≥ 0
for all N ; YN is an increasing sequence; and YN ր Y :=

∑∞
n=1Xn. Moreover, by the monotone convergence

theorem, limN→∞ EYN = EY = E
∑∞

n=1Xn. �

10.7. Theorem (Fatou’s Lemma). Let X1,X2, . . . ;Y be random variables such that Xn ≥ Y and EY >
−∞. Then

E lim inf
n→∞

Xn ≤ lim inf
n→∞

EXn.

10.8. Remark (Acronym). A good way to remember this is that we always write in the ≤ direction and
together it initialises ‘Elle’.

Proof. Define Zn := infm≥nXm. Then Zn is an increasing sequence; indeed infm≥nXm ≤ infm≥n+1Xm

since the infinum is over a larger domain. Furthermore, Zn ր Z := lim infn→∞Xn; this follows from the
fact that Zn is increasing and by definition

lim inf
n→∞

Xn = lim
n→∞

( inf
m≥n

Xm) = lim
n→∞

Zn.

Now Zn = infm≥nXm ≥ Y as Xm ≥ Y for all m ∈ N. Thus we are in good shape to apply the monotone
convergence theorem:

lim
n→∞

EZn = EZ = E lim inf
n→∞

Xn

But on the left-hand-side, as the limit exists it is equal to the lim inf. Now Zn = infm≥nXm ≤ Xn and thus

E lim inf
n→∞

Xn = lim
n→∞

EZn = lim inf
n→∞

EZn ≤ lim inf
n→∞

EXn. �

10.9. Theorem (Dominated Convergence Theorem). Let X,Y,X1,X2, . . . be random variables such that

|Xn| ≤ Y ; EY <∞; and Xn
a.s.−−→ X as n→∞. Then

(a) E|X| <∞;

(b) EXn → EX as n→∞;

(c) E|Xn −X| → 0.

Proof. To prove (a) note that Xn
a.s.−−→ X as n → ∞ implies that |Xn| a.s.−−→ |X| as n → ∞ (mod is a

continuous function). Furthermore, since |Xn| ≤ Y , we have that |X| = limn→∞ |Xn| ≤ Y almost surely.

To prove (b) we construct the following chain of inequalities

EX = E lim
n→∞

Xn = E lim inf
n→∞

Xn ≤
∗
lim inf
n→∞

EXn ≤ lim sup
n→∞

EXn ≤
∗∗

E lim sup
n→∞

Xn = E lim
n→∞

Xn = EX,

where ∗ follows from Fatou’s lemma and ∗∗ follows from Fatou’s lemma on −Xn; indeed we have the relation
lim infn→∞(−Xn) = − lim supn→∞Xn. Thus equality holds throughout the chain and we conclude that

lim inf
n→∞

EXn = lim sup
n→∞

EXn

︸ ︷︷ ︸
=⇒ =limn→∞ EXn

= EX.

Since the lim inf and lim sup agree, limn→∞ EXn exists and is equal to EX. Thus

lim
n→∞

EXn = EX(=
⋆
E lim
n→∞

Xn),

where ⋆ follows from the fact that E limn→∞Xn is also an element in the chain. This proves (b).

Now to prove (c) we note that |Xn − X| ≤ |Xn| + |X| ≤ 2Y . Then we repeat the analysis above with
|Xn −X| and bounding random variable Y ≡ 2Y . �
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10.10. Theorem (Cauchy-Schwarz Inequality). If X and Y are random variables with EX2 < ∞ and
EY 2 <∞ then

E|XY | ≤
√
EX2EY 2.

Proof. A corollary of Hölder’s inequality — later. �

10.11. Corollary. Let X be a random variable. Then X has finite variance if and only if X has finite
second moment.

Proof. Let EX2 <∞. Then VarX = EX2−(EX)2 ≤ EX2 <∞. (Indeed EX2 <∞ implies EX ≤ E|X| <∞
by Cauchy-Schwarz.) If a random variable has infinite mean, then it has infinite second moment and thus
infinite variance. Thus finite variance implies finite mean. These together implies finite second moment. �

10.12. Theorem (Jensen’s inequality). If g : R → R is convex and X is a random variable with
E|X| <∞ then Eg(X) ∈ R ∪ {∞} exists, and

g(EX) ≤ Eg(X).

10.13. Remark. This is easy to remember from the definition of convexity: Any line segment between two
points on the curve lies entirely above the curve i.e., for 0 ≤ α = 1−β ≤ 1, g(αx1+βx2) ≤ αg(x1)+βg(x2).
Then we extend this definition in the natural way.

Proof. Since g is convex, for all x0 ∈ R there exists λ such that g(x) ≥ g(x0)+λ(x−x0). (E.g., the tangent
to the curve at all points is a lower bound for the curve if it happens to be differentiable, but this is not
needed.) Hence g(X) ≥ g(x0) + λ(X − x0); in particular, for x0 = EX ∈ R,

g(X) ≥ g(EX) + λ(X − EX).

Note that λ is a constant which depends on the function g and the value of EX only (the slope of the
bounding line is dependent only on the position x0 on the curve) and thus it is not random. Therefore
E
(
g(X)−

)
<∞, hence Eg(X) exists, and

Eg(X) ≥ Eg(EX) + E[λ(X − EX)] = g(EX) + λ[EX − EX] = g(EX). �

10.14. Theorem (Ljapunov’s Inequality). For all 0 < s < t,

(E|X|s) 1
s ≤ (E|X|t) 1

t .

Proof.

(E|X|s) 1
s = [(E|X|s) t

s ]
1
t ≤
⋆⋆

[E(|X|s) t
s ]

1
t = (E|X|t) 1

t ,

where ⋆⋆ follows from Jensen’s inequality on the function ( · ) t
s : R → R; which is convex since t > s and

therefore t
s > 1. �
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10.15. Theorem (Hölder’s inequality). Let p, q > 1 be such that 1
p +

1
q = 1. If the random variables X

and Y are such that E|X|p <∞ and E|Y |q <∞ then

E|XY | ≤ (E|X|p)
1
p · (E|Y |q)

1
q .

10.16. Remark (Cauchy-Schwarz). Note that with p = q = 2, Hölder’s inequality is precisely the Cauchy-
Schwarz inequality.

Proof. Since log : R→ R is a concave function and x
p +

y
q is a convex combination of x and y we have that

log

(
x

p
+
y

q

)
≥ log(x)

p
+

log(y)

q
=⇒ x

p
+
y

q
≥ x

1
p · y

1
q ,

since the exponential function is increasing. Let x = |X|p
E|X|p and y = |Y |q

E|Y |q . Then

1

p

|X|p
E|X|p +

1

q

|Y |q
E|Y |q ≥

|X|
(E|X|p)

1
p

· |Y |
(E|Y |q)

1
q

.

Taking expectations of both sides,

1 ≥ E|XY |
(E|X|p)

1
p (E|Y |q)

1
q

. �

10.17. Definition (Lp-norm). Let X be a random variable with finite pth absolute moment. We denote

‖X‖p := (E|X|p)
1
p for p ≥ 1 and call it the Lp-norm of X. It is a norm on the space of F-measurable

functions X : Ω→ R.

In this notation the previous results reduce to the following.

• Ljapunov: for 0 < s < t, ‖X‖s ≤ ‖X‖t;
• Cauchy-Schwarz: E|XY | ≤ ‖X‖2‖Y ‖2;
• Hölder: for p, q > 1 such that 1

p +
1
q = 1, E|XY | ≤ ‖X‖p‖Y ‖q.

10.18. Theorem. ‖ · ‖p, p ≥ 1 defines a true norm on the space of F-measurable functions X : Ω→ R

with finite pth moment.

Proof. Clearly for all X ∈ mF , ‖X‖p ≥ 0. Moreover, equality holds if and only if X = 0 almost surely. Let

λ ∈ R. Then ‖λX‖p = (E|λX|p)
1
p = (λpE|X|p)

1
p = λ‖X‖p. Thus it remains to prove the triangle inequality.

See Minkowski inequality below. �

10.19. Theorem (Minkowski’s Inequality). For any random variables X and Y and for all p ≥ 1, the
triangle inequality for the Lp-norm holds, i.e.,

‖X + Y ‖p ≤ ‖X‖p + ‖Y ‖p.

Proof. If either (or both) ‖X‖p = ∞ or ‖Y ‖p = ∞ then the inequality holds trivially. Hence suppose that
‖X‖p <∞ and ‖Y ‖p <∞.

For the case p = 1 this is trivial and follows immediately from the triangle inequality of the mod.
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Now consider the case p > 1. Define F (x) = (a+ x)p − 2p−1(ap + xp), x > 0; where a > 0 is some constant.
This has the derivative

F ′(x) = p(a+ x)p−1 − 2p−1pxp−1,

and so F is stationary at x = a. Furthermore,

F ′(x) > 0 ⇐⇒ p(a+ x)p−1 − 2p−1pxp−1 > 0 ⇐⇒
(
a+ x

2x

)p−1

> 1 ⇐⇒ x < a.

Similarly, F ′(x) = 0 if and only if x = a and F ′(x) < 0 if and only if x > a. Thus F is an increasing function
for x < a; reaching a global maximum at x = a and then decreasing for x > a. Therefore, F (x) ≤ F (a) = 0
for all x ∈ R. We therefore have the inequality

(a+ x)p ≤ 2p−1(ap + xp)

for all a > 0, x > 0, p > 1. Applying this:

|X + Y |p ≤ (|X|+ |Y |)p ≤ 2p−1(|X|p + |Y |p).
Taking expectations,

E|X + Y |p ≤ 2p−1(E|X|p + E|Y |p) <∞⋆

since we assumed that both ‖X‖p < ∞ and ‖Y ‖p < ∞. This verifies that ‖X + Y ‖p < ∞, that is,
X + Y ∈ LP (Ω). Now we prove the Minkowski inequality.

E|X + Y |p = E(|X + Y ||X + Y |p−1) ≤
∗
E
[(
|X| + |Y |

)
|X + Y |p−1

]
= E(|X||X + Y |p−1) + E(|Y ||X + Y |p−1).

Above, ∗ follows from the triangle inequality on R. Let q be such that 1
p +

1
q = 1; this implies q = p/(p− 1).

By Hölder’s inequality

E(|X||X + Y |p−1) ≤ (E|X|p)
1
p (E|X + Y |(p−1)q)

1
q = (E|X|p)

1
p (E|X + Y |p︸ ︷︷ ︸

<∞ by ⋆

)
1
q = ‖X‖p‖X + Y ‖

p
q
p ,

E(|Y ||X + Y |p−1) ≤ (E|Y |p)
1
p (E|X + Y |(p−1)q)

1
q = (E|Y |p)

1
p (E|X + Y |p)

1
q = ‖Y ‖p‖X + Y ‖

p
q
p .

Plugging this into the above yields that,

E|X + Y |p︸ ︷︷ ︸
=‖X+Y ‖pp

≤
(
‖X‖p + ‖Y ‖p

)
‖X + Y ‖

p
q
p .

Dividing through by ‖X +Y ‖
p
q
p (≥ 0) and noting that p− p/q = 1 by the definition of q (multiply by p), this

is precisely the Minkowski inequality. �

11. Modes of Convergence

11.1. Definition (Modes of convergence). Let X1,X2,X3, . . . be a sequence of random variables. We say
that

(a) Xn converges weakly (or in distribution) to X, written Xn
w−→ X or Xn

d−→ X or Xn ⇒ X, if and
only if for every bounded and continuous function f on the image of X we have Ef(Xn)→ Ef(X).

Note that this is equivalent to FXn(x) → FX(x) (the distribution functions for Xn and X respec-
tively) for all x for which FX(x) is continuous.

Remark. We do not require a common probability space, only that the distribution functions con-
verge.

(b) Xn converges in probability to X, written Xn
P−→ X, if for all ε > 0, P(|Xn−X| ≥ ε)→ 0 as n→∞.

That is, the subset of the sample space Ω for which the difference between Xn and X is larger than
arbitrary ε > 0 has probability going to 0.

Remark. Note that here we do require Xn and X to be on a common probability space (i.e. we can
couple the outcome of Xn and X for a realisation ω ∈ Ω).
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(c) Xn converges almost surely (or strongly) to X, written Xn
a.s.−−→ X if and only if P(Xn → X) = 1.

Note that Xn → X is an event that can be interpreted as follows. On a realisation ω ∈ Ω, we define
a sequence of real numbers X1(ω),X2(ω), . . . and X(ω). If Xn(ω)→ X(ω) then the event Xn → X

has occurred. We say Xn
a.s.−−→ X if the set {ω ∈ Ω : Xn(ω) → X(ω)} has probability 1. Note that

this is a very strong stipulation.

(d) Xn converges in Lp, written Xn
Lp

−→ X, if and only if ‖Xn −X‖p → 0 as n→∞, or equivalently, if
and only if E|Xn −X|p → 0 as n→∞.

Remark. By Ljapunov’s inequality, ‖X‖s ≤ ‖X‖t for all 0 < s < t. Hence for 0 < s < t, Xn
Lt

−→ X

implies that Xn
Ls

−→ X.

11.2. Theorem.

(a) Xn
a.s.−−→ X if and only if for all ε > 0, P(supk≥n |Xk −X| ≥ ε)→ 0 as n→∞.

(b) Xn is Cauchy almost surely if and only if for all ε > 0, P(supk,ℓ≥n |Xk−Xℓ| ≥ ε)→ 0 as n→∞.
This is also equivalent to for all ε > 0, P(supk≥0 |Xn+k −Xn| ≥ ε)→ 0.

11.3. Remark. Note that (a) is like a ‘boosted’ version of convergence in probability, where we require that
all points onwards from n are within ε of X.

Proof. (a). Define the events Amk := {ω ∈ Ω : |Xk −X| ≥ 1
m} and Am :=

⋂∞
n=1

⋃∞
k=nA

m
k , which is the event

that |Xk −X| ≥ 1
m for infinitely many k.

Note that Xn 6→ X if for some m ∈ N, Am occurs; that is, for some m > 0, |Xk − X| ≥ 1
m for infinitely

many k. The event that this happens for at least one m is
⋃∞
m=1A

m. Thus Xn
a.s.−−→ X if and only if

P(
⋃∞
m=1A

m) = 0. Since P(Am) ≤ P(
⋃∞
m=1A

m) ≤∑∞
m=1 P(A

m), P(
⋃∞
m=1A

m) = 0 if and only if P(Am) = 0
for all m ∈ N. P(Am) = 0 if and only if

0 = P

( ∞⋂

n=1

∞⋃

k=n

Amk

︸ ︷︷ ︸
⋆

)
= lim

n→∞
P

( ∞⋃

k=n

Amk

︸ ︷︷ ︸
⋆⋆

)
= lim

n→∞
P(sup
k≥n
|Xk −X| ≥ 1/m).

⋆ defines a decreasing sequence. ⋆⋆ is the event that for some k ≥ n we have |Xk −X| ≥ 1
m , which occurs

if and only if the supremum, supk≥n |Xk −X| ≥ 1/m.

As the above m is arbitrarily large, the proof is complete.

To prove (b), we repeat exactly the same analysis with the event Bm
k,ℓ = {ω ∈ Ω : |Xk −Xℓ| ≥ 1

m}. �

11.4. Theorem. The four types of convergence above can be partially ordered in strength.

(a) Xn
a.s.−−→ X =⇒ Xn

P−→ X.

(b) Xn
Lp

−→ X =⇒ Xn
P−→ X.

(c) Xn
P−→ X =⇒ Xn

d−→ X.

Proof. To prove (a) we use the previous theorem, that is, that Xn
a.s.−−→ X if and only if for all ε > 0,

P(supk≥n |Xk − X| ≥ ε) → 0 as n → ∞. The event |Xn −X| ≥ ε implies that supk≥n |Xk − X| ≥ ε, and
thus

P(|Xn −X| ≥ ε) ≤ P(sup
k≥n
|Xk −X| ≥ ε)→ 0,
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which implies Xn
P−→ X.

To prove (b) we use Markov’s inequality, which says that for a non-negative random variable Z, P(Z ≥ c) ≤
EZ/c. Then for all p > 0,

P(|Xn −X| ≥ ε) = P(|Xn −X|p ≥ εp) ≤
E|Xn −X|p

εp
=
‖Xn −X‖pp

εp
→ 0

as n→∞ since Xn
Lp

−→ if and only if ‖Xn −X‖p → 0.

Now we prove (c) which says that convergence in probability implies weak convergence (in distribution).
This is the most difficult to prove. Fix f bounded and continuous such that |f(x)| ≤ c (♠) for some c > 0.
We want to show that Ef(Xn)→ Ef(X), or equivalently that |Ef(Xn)− Ef(X)| → 0. Fix ε > 0.

Assuming X has a proper distribution, i.e., that X is finite almost surely, there exists N > 0 such that

(⋆) P(|X| > N) ≤ ε

4c
.

[−2N, 2N ] is compact, and thus f is uniformly continuous on [−2N, 2N ]. Hence there exists δ > 0 such
that for all x, y ∈ [−2N, 2N ] with |x− y| ≤ δ we have

(†) |f(x)− f(y)| ≤ ε

2
.

Define E(Z;A) = E(Z1A). Then for a disjoint partition of the sample space A1, A2, . . . , An, we may write
EZ = E(Z;A1) + E(Z;A2) + · · · + E(Z;An). This is because E(Z;A1) + E(Z;A2) + · · · + E(Z;An) =
E[Z(1A1 + · · ·+1An)] by linearity of expectation and because (1A1 + · · ·+1An)(ω) = 1 for all ω ∈ Ω by the
disjointness of the partition.

|Ef(Xn)− Ef(X)| = |E[f(Xn)− f(X)]|
≤ E|f(Xn)− f(X)| Jensen’s inequality on | · |

= E

[
|f(Xn)− f(X)|︸ ︷︷ ︸

≤ ε
2
⇐= †

; |Xn −X| ≤ δ; |X| ≤ N︸ ︷︷ ︸
=⇒ Xn,X∈[−2N,2N ],1≤1

]

+ E

[
|f(Xn)− f(X)|︸ ︷︷ ︸

♠ =⇒ ≤2c

; |Xn −X| ≤ δ︸ ︷︷ ︸
1≤1

; |X| > N
]

+ E

[
|f(Xn)− f(X)|︸ ︷︷ ︸

♠ =⇒ ≤2c

; |Xn −X| > δ
]

≤ ε

2
+ 2cP(|X| > N)︸ ︷︷ ︸

⋆ =⇒ ≤ ε
4c

+2cP(|Xn −X| > δ)

≤ ε+ 2cP(|Xn −X| > δ).

Since Xn
P−→ X, there exists N > 0 such that n ≥ N implies that P(|Xn − X| > δ) ≤ ε

2c . Thus n ≥ N
implies that

|Ef(Xn)− Ef(X)| ≤ ε+ 2cP(|Xn −X| > δ) ≤ 2ε. �

12. Strong Law of Large Numbers

12.1. Theorem (Strong law of large numbers (SLLN)). Let X1,X2, . . . be independent and identically
distributed random variables with finite mean µ <∞. Then

1

n

n∑

i=1

Xi
a.s.−−→ µ.
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12.2. Corollary (Weak law of large numbers (WLLN)). Let X1,X2, . . . be independent and identically
distributed random variables with finite mean µ <∞. Then

1

n

n∑

i=1

Xi
P−→ µ.

Proof. This follows immediately from the strong law of large numbers, since almost sure convergence implies
convergence in probability. �

The rest of this section is work towards proving the SLLN.

12.3. Theorem (Kolmogorov’s inequality). Suppose we have X1,X2, . . . ,Xn independent (not necessar-
ily identically distributed) with EXi = 0 and VarXi <∞ for all i = 1, 2, . . . , n. Then,

(a) for all ε > 0,

P( max
1≤k≤n

|Sk| ≥ ε) ≤
ES2

n

ε2
,

where Sk =
∑k

i=1Xi.

(b) If in addition |Xi| ≤ c almost surely for all i = 1, . . . , n and some c > 0 then

P( max
1≤k≤n

|Sk| ≥ ε) ≥ 1− (c+ ε)2

ES2
n

.

Proof. We start with (a). Define A := {ω ∈ Ω : max1≤k≤n |Sk(ω)| ≥ ε} as the event that max1≤k≤n |Sk(ω)| ≥
ε and let Ak := {ω ∈ Ω : |Si(ω)| < ε for i = 1, 2, . . . , k − 1; |Sk(ω)| ≥ ε} for k = 1, . . . , n to be the event that
k is the first value for which |Si(ω) > ε|.
Then the Ak are disjoint and

⋃n
k=1Ak is the event that at least one of |Sk(ω)| for k = 1, . . . , n is larger than

or equal to ε. Hence A =
⋃n
k=1Ak.

Note that by the disjointness of the Ak,

ES2
n ≥ E(S2

n;A) =
n∑

k=1

E(S2
n;Ak).

Now we focus on E(S2
n;Ak).

E(S2
n;Ak) = E

[
(Sk +Xk+1 + · · · +Xn)

2;Ak
]

= E(S2
k;Ak) + 2E

[
Sk(Xk+1 + · · · +Xn︸ ︷︷ ︸

independent of Sk,Ak

);Ak
]
+ E

[
(Xk+1 + · · ·+Xn)

2;Ak
]

︸ ︷︷ ︸
≥0

≥ E(S2
k;Ak) + 2E(Sk;Ak)E(Xk+1 + · · ·+Xn)︸ ︷︷ ︸

=0

= E(S2
k;Ak).

Thus E(S2
n;Ak) ≥ E(S2

k;Ak), but E(S2
k;Ak) ≥ E(ε2;Ak) = ε2P(Ak). The inequality holds since for ω ∈ Ω

for which 1Ak
is non-zero, |Sk(ω)| ≥ ε. Furthermore,

ES2
n ≥

n∑

k=1

E(S2
n;Ak) ≥

n∑

k=1

E(S2
k;Ak) ≥ ε2

n∑

k=1

P(Ak) = ε2P(A),

since A =
⋃n
k=1Ak and the partition is disjoint. Rearranging gives (a).
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Now we prove (b); to do so we use the same definition of A and Ak above. First we note that

E(S2
n;A) = ES2

n − E(S2
n;A

c) ≥
∗
ES2

n − ε2P(Ac) = ES2
n − ε2 + ε2P(A).

The inequality ∗ follows from that the ω ∈ Ω for which 1Ac is non-zero is also the ω ∈ Ω for which
max1≤k≤n |Sk(ω)| < ε and therefore Sn(ω) < ε and thus E(S2

n;A
c) ≤ E(ε2;Ac) = ε2P(Ac).

On the other hand,

E(S2
n;Ak) = E

[
(Sk +Xk+1 + · · ·+Xn)

2;Ak
]

= E(S2
k;Ak) + 2E

[
Sk(Xk+1 + · · ·+Xn);Ak

]
︸ ︷︷ ︸

=0, as above

+E
[
(Xk+1 + · · ·+Xn)

2;Ak
]

= E(S2
k;Ak) + E

[
(Sn − Sk)2;Ak

]
.

Hence

E(S2
n;A) =

n∑

k=1

E(S2
n;Ak) =

n∑

k=1

E(S2
k;Ak) +

n∑

k=1

E
[
(Sn − Sk)2;Ak

]
.

The event Ak implies (by definition) that |Sk−1(ω)| < ε. Therefore |Sk| = |Xk+Sk−1| ≤ |Xk|+ |Sk−1| ≤ c+ε
since Xk is bounded by c almost surely. Moreover,

(⋆) E(S2
k;Ak) ≤ (c+ ε)2P(Ak).

Now Sn − Sk = Xk+1 + · · ·+Xn which is independent of Ak. Thus E
[
(Sn − Sk)2;Ak

]
= E(Sn − Sk)2P(Ak).

By the independence of the Xi, E(XiXj) = EXiEXj = 0. Hence

(⋆⋆) E
[
(Sn − Sk)2;Ak

]
= E(Sn − Sk)2P(Ak) = E(Xk+1 + · · ·+Xn)

2P(Ak) =

n∑

j=k+1

EX2
j P(Ak)

as all cross terms cancel by the above.

Moreover,

E(S2
n;A) =

n∑

k=1

E(S2
k;Ak) +

n∑

k=1

E
[
(Sn − Sk)2;Ak

]

≤
n∑

k=1

(c+ ε)2P(Ak)︸ ︷︷ ︸
by ⋆

+

n∑

k=1

by ⋆⋆︷ ︸︸ ︷
n∑

j=k+1

EX2
j P(Ak)

︸ ︷︷ ︸
≤
∑n

j=1 EX
2
j P(Ak)

≤ (c+ ε)2P(A) +

n∑

j=1

EX2
j

︸ ︷︷ ︸
=ES2

n

P(A) =
[
(c+ ε)2 + ES2

n

]
P(A).

Combining the two inequalities we have found we have that
[
(c + ε)2 + ES2

n

]
P(A) ≥ ES2

n − ε2 + ε2P(A).
Now we simply rearrange. The inequality implies that

[
(c+ ε)2 − ε2 + ES2

n

]
P(A) ≥ ES2

n − ε2 =⇒ P(A) ≥ ES2
n − ε2

(c+ ε)2 − ε2 + ES2
n

= 1− (c+ ε)2

(c+ ε)2 − ε2︸ ︷︷ ︸
>0

+ES2
n

≥ 1− (c+ ε)2

ES2
n

. �
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12.4. Theorem (Kolmogorov-Khinchin). Let X1,X2, . . . be independent (not necessarily identically dis-
tributed) random variables with EXi = 0 for all i ∈ N. Then

(a)
∑∞

n=1 EX
2
n <∞ =⇒ ∑

nXn converges almost surely;

(b) If |Xn| ≤ c almost surely and
∑

nXn converges almost surely then
∑∞

n=1 EX
2
n <∞.

Proof. In order to prove (a) we show that Sn is Cauchy almost surely. Recall that Sn is Cauchy almost
surely if and only if for all ε > 0, P(supk≥1 |Sn+k − Sn| ≥ ε)→ 0.

P(sup
k≥1
|Sn+k − Sn| ≥ ε) =∗ lim

N→∞
P( max

1≤k≤N
|Sn+k − Sn| ≥ ε)

≤
†

lim
N→∞

∑n+N
j=n+1 EX

2
j

ε2
=

1

ε2

∞∑

j=n+1

EX2
j → 0

since it is the tail of a convergent sum (by assumption).

∗ is allowed since max1≤k≤N |Sn+k − Sn| ≥ ε is an increasing sequence of events in N . † follows from the
first part of Kolmogorov inequality on Sn+k − Sn = Xn+1 + · · ·+Xn+k := Tk where

ET 2
k =

n+N∑

j=n+1

EX2
j

since cross terms have zero-expectation. Thus Sn is Cauchy almost surely. By the completeness of R, Sn
converges almost surely, which proves (a).

Now for (b). If Sn converges almost surely then it is Cauchy almost surely. Again, using that theorem from
before, Sn is Cauchy almost surely if and only if for all ε > 0, P(supk≥1 |Sn+k − Sn| ≥ ε)→ 0. Then for all
sufficiently large n,

1

2
> P(sup

k≥1
|Sn+k − Sn| ≥ ε) ≥

‡
1− (c+ ε)2∑∞

j=n+1 EX
2
j

.

‡ follows from the second part of Kolmogorov’s inequality and by the same working with limits above.
Rearranging this inequality gives that

∞∑

j=n+1

EX2
j ≤ 2(c+ ε)2,

and hence it converges (for all n sufficiently large). Moreover,
∑∞

j=1 EX
2
j converges since it is the sum of a

finite sum (up to n+ 1) and an (infinite) convergent sum. �

12.5. Theorem (Toeplitz lemma). Let (an) be a sequence with an ≥ 0 for all n and bn :=
∑n

i=1 ai > 0
(thus at least a1 > 0 strictly). Suppose bn ր∞ as n→∞. If xn → x as n→∞, then

1

bn

n∑

i=1

aixi → x as n→∞.

12.6. Example. If ai = 1 for all i ∈ N then bn = n ր ∞. Then if xn → x, 1
n

∑n
i=1 xi → x. This is also

known as Cesàro’s lemma.

Proof. Fix ε > 0 and choose n0 such that n ≥ n0 implies that |xn − x| < ε/2. Then fix n1 ≥ n0 such that

1

bn1

n0∑

i=1

ai|xi − x| < ε/2.
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We can do this since we treat
∑n0

i=1 ai|xi − x| as fixed and since bn ր∞ we simply need to choose n1 large
enough.

Then for all n ≥ n1 ≥ n0, (writing x = ( 1
bn

∑n
i=1 ai)x)

∣∣∣∣
1

bn

n∑

i=1

aixi − x
∣∣∣∣ ≤

1

bn

n∑

i=1

ai|xi − x|

≤ 1

bn1

n0∑

i=1

ai|xi − x|+
1

bn

n∑

i=n0+1

ai|xi − x|

<
ε

2
+

1

bn

n∑

i=n0+1

ai

︸ ︷︷ ︸
≤1

ε

2
≤ ε. �

12.7. Theorem (Kronecker’s lemma). Let bn > 0 for n ∈ N; bn ր∞ as n→∞. If (xn) is a sequence
such that

∑
n xn converges then

1

bn

n∑

i=1

bixi → 0.

Proof. The proof of Kronecker’s lemma is slightly more involved than that of the Toeplitz lemma.

Let b0 := 0; s0 := 0 and sn :=
∑n

i=1 xi.
n∑

i=1

bixi =
n∑

i=1

bi(si − si−1) =∗
bnsn − b0s0︸︷︷︸

=0

−
n∑

i=1

si−1(bi − bi−1).

The equality ∗ is known as summation by parts and is the analogue of integration by parts for sums. It is
easily verified by comparing terms:

• On the left we have +b1s1,+b2s2, . . . ,+bnsn.

• On the left we have −b1s0,−b2s1, . . . ,−bnsn−1.

It is easy to see that these terms appear on the right hand side. Moreover,

1

bn

n∑

i=1

bixi = sn −
1

bn

n∑

i=1

si−1 (bi − bi−1)︸ ︷︷ ︸
:=ai

.

Then ai ≥ 0 for all i since bi increasing implies ai = bi−bi−1 ≥ 0. Furthermore,
∑n

i=1 ai =
∑n

i=1(bi−bi−1) =
bn. Then we are in good shape to apply Toeplitz lemma,

lim
n→∞

1

bn

n∑

i=1

bixi = lim
n→∞

sn − lim
n→∞

1

bn

n∑

i=1

aisi−1 = s− s = 0. �

12.8. Theorem (Kolmogorov). Let X1,X2, . . . be independent (not necessarily identically distributed)
with finite variance VarXn <∞ for all n ∈ N. Let bn ր∞ as n→∞; bn > 0 such that

∞∑

n=1

VarXn

b2n
<∞ then

Sn − ESn
bn

a.s.−−→ 0.

12.9. Example. When bn = n with Xn i.i.d. random variables then Kolmogorov’s theorem is the strong
law of large numbers with the stipulation that the random variables must additionally have a finite second
moment.
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Proof. We rewrite the sequence in order that we may use Kronecker’s lemma.

Sn − ESn
bn

=
1

bn

n∑

i=1

(Xi − EXi) =
1

bn

n∑

i=1

bi
Xi − EXi

bi
.

By Kronecker’s lemma, to show that this converges to 0 in n, it suffices to show that
∑

i
Xi−EXi

bi
converges.

Let

Yi =
Xi − EXi

bi
=⇒

∞∑

i=1

EY 2
i =

∞∑

i=1

VarXi

b2i
<∞.

Thus applying Kolmogorov-Khinchin to Yi we have that
∑∞

n=1 Yn <∞ almost surely. �

12.10. Lemma. Let X be a random variable such that X ≥ 0 almost surely. Then
∞∑

n=1

P(X ≥ n) ≤ EX ≤ 1 +

∞∑

n=1

P(X ≥ n).

Proof. Note that if Y ≥ 0 a.s. is an integer valued random variable, then EY =
∑∞

n=1 P(Y ≥ n), thus
equality holds on the left and strict inequality on the right. Why is this true in the integer valued case?

∞∑

n=1

P(Y ≥ n) =
∞∑

n=1

∞∑

k=n

P(Y = k) =
∞∑

k=1

k∑

n=1

P(Y = k) =
∞∑

k=1

kP(X = k) = EY.

Now consider the general case. We can certainly approximate X by its floor: ⌊X⌋ ≤ X ≤ ⌊X⌋+1. But the
above holds for ⌊X⌋, and hence

∞∑

n=1

P(⌊X⌋ ≥ n) = E⌊X⌋ ≤ EX ≤ E⌊X⌋+ 1 = 1 +

∞∑

n=1

P(⌊X⌋ ≥ n).

But since n is an integer, X ≥ n if and only if ⌊X⌋ ≥ n, which completes the proof. �

12.11. Theorem (Strong law of large numbers). Let X1,X2, . . . be independent and identically distributed
random variables with finite mean µ <∞. Then

1

n

n∑

i=1

Xi
a.s.−−→ µ.

Proof. Assume without loss of generality that µ = 0 (if non-zero then the theorem applies to Xi ≡ Xi − µ
which has zero-mean).

By the previous lemma,

∞ > E|X1| ≥
∞∑

n=1

P(|X1| ≥ n) =
∞∑

n=1

P(|Xn| ≥ n)

by the fact that the Xi are identically distributed. Let An := {ω ∈ Ω : |Xn(ω)| ≥ n}. Then ∑∞
n=1 P(An) <

∞. Hence by the first Borel-Cantelli lemma, P(An i.o.) = 0. (Note that this statement did not require the
independence of the Xi.) So An = {|Xn| ≥ n} happens finitely many times almost surely.

Thus we define the adjusted random variable X̃n where

X̃n :=

{
Xn, if |Xn| < n,

0, if |Xn| ≥ n.
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Since we previously concluded by Borel-Cantelli 1 that |Xn| ≥ n only finitely many times almost surely,

then the new sequence X̃n is equal to Xn except for only finitely many n’s almost surely. Therefore

1

n

n∑

i=1

Xi
a.s.−−→ 0 ⇐⇒ 1

n

n∑

i=1

X̃i
a.s.−−→ 0.

This equivalence holds only because X̃n changes only finitely many terms (almost surely).

We calculate the limiting expectation of X̃n. Now EX̃n = E(Xn1{|Xn|<n}) since X̃n = Xn1{|Xn|<n} by

defintion. Thus EX̃n = E(Xn; |Xn| < n). By the i.i.d. property of the Xi, EX̃n = E(X1; |X1| < n). Note
that

• |X11{|X1|<n}| ≤ |X1| a.s.;

• E|X1| <∞ (by the hypothesis);

• X11{|X1|<n}
a.s.−−→ X1 as n→∞.

Hence we are in good shape to apply the Dominated Convergence Theorem to the sequence X11{|X1|<n}
and conclude that

EX̃n = E(X1; |X1| < n) = E(X11{|X1|<n})→ EX1 = µ = 0.

Hence we have shown that EX̃n → 0 as n→∞. Hence

(†) 1

n

n∑

i=1

EX̃i → 0

by Toeplitz’s lemma. Note that in general EX̃i 6= 0. Why? Consider X1 a continuous random variable for
the purpose of illustration. Then

EX̃n = E(X11{|X1|<n}) =
∫ ∞

−∞
x1{|x|<n}fX1(x)dx =

∫ n

−n
xfX1(x)dx 6= EX = 0.

We want to show that 1
n

∑n
i=1 X̃i

a.s.−−→ 0. By †,

1

n

n∑

i=1

X̃i
a.s.−−→ 0 ⇐⇒ 1

n

n∑

i=1

(X̃i − EX̃i)
a.s.−−→ 0 ⇐⇒ 1

n

n∑

i=1

i
X̃i − EX̃i

i

a.s.−−→ 0.

Thus by Kronecker’s lemma it suffices to show that
∑

i
X̃i−EX̃

i converges almost surely. By Kolmogorov-

Khinchin (since Xi are independent, X̃i are independent and therefore (X̃i − EX̃i)/i are independent) this
is true if

∞∑

i=1

E

[
X̃i − EX̃

i

]2
=

∞∑

i=1

VarX̃i

i2
<∞.
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In order to show this we perform some algebraic manipulation.
∞∑

n=1

VarX̃n

n2
=

∞∑

n=1

EX̃2
n − [EX̃n]

2

n2

≤
∞∑

n=1

EX̃2
n

n2

=

∞∑

n=1

E(X2
n; |Xn| < n)

n2

=

∞∑

n=1

1

n2

n∑

k=1

E(X2
n; k − 1 ≤ |Xn| < k) ∵ events form a disjoint partition

=
∞∑

n=1

1

n2

n∑

k=1

E(X2
1 ; k − 1 ≤ |X1| < k) ∵ Xi are i.i.d.

=
∞∑

k=1

E(X2
1 ; k − 1 ≤ |X1| < k)

∞∑

n=k

1

n2
By switching the order of the sum

Let us work on
∑∞

n=k
1
n2 . For k = 1 this is simply equal to π2

6 < 2. For k ≥ 2,

∞∑

n=k

1

n2
≤

∫ ∞

k−1

1

x2
dx = −1

x

∣∣∣∣
∞

k−1

=
1

k − 1
≤ 2

k
.

Note that the final inequality holds only in the case k ≥ 2. Hence for all k ∈ N,
∑∞

n=k
1
n2 ≤ 2

k . Making this
substitution,

∞∑

n=1

VarX̃n

n2
≤

∞∑

k=1

E(X2
1︸︷︷︸

<k|X1| ⇐=

; k − 1 ≤ |X1| < k)
2

k

< 2

∞∑

k=1

E(|X1|; k − 1 ≤ |X1| < k)

= 2E|X1| <∞ ∵ disjoint partition �

12.12. Theorem (SLLN in reverse). Let X1,X2, . . . be an i.i.d. sequence such that

1

n

n∑

k=1

Xk
a.s.−−→ c

for some c <∞. Then EXk = c.

Proof. Indeed
Xk

k
=
Sk − Sk−1

k
=
Sk
k
− k − 1

k

Sk−1

k − 1

a.s.−−→ c− 1× c = 0.

Then

P(|Xk| > k i.o.) = P(|Xk/k| > 1 i.o.) = 0.

By independence and Borel-Cantelli Lemma 2,
∞∑

k=1

P(|Xn| > n) <∞ =⇒
∞∑

k=1

P(|X1| > n) <∞ =⇒ µ := E|X1| <∞

by a few lemmas ago. Since the mean is finite we can apply the SLLN,

1

n

n∑

k=1

Xk
a.s.−−→ µ =⇒ µ = EXk = c. �
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12.13. Remark. Does SLLN hold when EX−
1 <∞ but EX+

1 =∞ ( =⇒ EX1 =∞)? Yes. Why? Define

Scn =

∞∑

i=1

Xi1{Xi≤c}.

SLLN applies to Xi1{Xi≤c} as this is now bounded by c, preventing the unboundedness issue. Note that

lim inf
n→∞

Sn
n
≥ lim inf

n→∞
Scn
n

= E(Xi1{Xi≤c})ր EX1 =∞.

13. Characteristic Functions

13.1. Definition. The characteristic function of a random variable X is the function ϕ : R → C is defined
by

ϕ(t) = EeitX .

We write, see the remark on Lebesgue-Stieltjes itegration after Definition 9.22,

ϕ(t) =

∫ ∞

−∞
eitxdF (x)

where F (x) is the distribution function of X. Note that if X is continuous then
∫ ∞

−∞
eitxdF (x) =

∫ ∞

−∞
eitxf(x)dx

and if X is discrete then ∫ ∞

−∞
eitxdF (x) =

∑

n

eitxnp(xn).

13.2. Remark. The characteristic function always exists.

13.3. Proposition (Properties of characteristic functions).

(a) ϕ : R→ C is uniformly continuous.

(b) ϕ(0) = 1; |ϕ(t)| ≤ 1 for all t ∈ R. Furthermore, ϕ satisfies one of

(i) |ϕ(t)| < 1 for all t 6= 0;

(ii) there exists λ ∈ R, λ > 0, such that |ϕ(t)| < 1 for 0 < t < λ and |ϕ(λ)| = 1.

In this case, ϕ is periodic in | · | with period λ, that is |ϕ(t+nλ)| = |ϕ(t)|, and X has lattice
distribution, that is, there exists b ∈ R such that

P

(
X ∈

{
b+

2πk

λ
: k ∈ Z

})
= 1.

(iii) |ϕ(t)| = 1 for all t ∈ R.

In this case, ϕ(t) = eibt for some b ∈ R and X ≡ b almost surely.

(c) For a, b ∈ R fixed, ϕaX+b(t) = eibtϕX(at).

(d) ϕX(t) = ϕ−X(t) = ϕX(−t).
(e) There exist random variables X and Y of different distribution such that ϕX(t) = ϕY (t) for

t ∈ [a, b] for some −∞ < a < b <∞.

However, if ϕX(t) = ϕY (t) for all t ∈ R then X and Y are of the same distribution. In this
sense, the characteristic function uniquely determines the distribution of X.

(f) If X and Y are independent then

ϕX+Y (t) = ϕX(t)ϕY (t).
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Proof. (a). Note that using Jensen’s inequality

|ϕ(t + h)− ϕ(t)| = |Eei(t+h)X − EeitX | = |EeitX(eihX − 1)| ≤ E |eitX |︸ ︷︷ ︸
=1

|eihX − 1|.

Left with something which is uniform in t. |eihX − 1| a.s.−−→ 0 as h→ 0 and |eihX − 1| ≤ 2 hence we can apply
DCT =⇒ E|eihX − 1| → E0 = 0.

(b). Clearly ϕ(0) = Ee0 = 1. Using Jensen’s inequality on | · |,
|ϕ(t)| = |EeitX | ≤ E|eitX | = 1.

Clearly only one of (i), (ii) or (iii) can happen since |ϕ(t)| ≤ 1 and ϕ(0) = 1.

(ii). We prove that if there exists λ ∈ R, λ > 0, such that |ϕ(t)| < 1 for 0 < t < λ and |ϕ(λ)| = 1 then ϕ
has period λ and X has lattice distribution.

If |ϕ(λ)| = 1 then ϕ(λ) = eibλ for some b ∈ R. Hence

1 = ϕ(λ)e−ibλ = Eeiλ(X−b) = E
[
cos(λ(X − b)) + i sin(λ(X − b))

]
.

So E sin(λ(X − b)) = 0 and E cos(λ(X − b)) = 1.

=⇒ cos(λ(X − b)) = 1 and sin(λ(X − b)) = 0 almost surely.

Why? Because cos ≤ 1 so all mass is concentrated on values of X for which cos(λ(X − b)) = 1.

=⇒ λ(X − b) = 2πk, k ∈ Z almost surely.

=⇒ X ∈ {b+ 2πk/λ : k ∈ Z} almost surely; so X has lattice distribution.

In this case we show that ϕ is periodic. As X has a lattice distribution we can define

pk := P(X = b+ 2πk/λ) where
∑

k∈Z
pk = 1.

Then

ϕ(t) = EeitX =
∑

k∈Z
pke

it(b+ 2πk
λ

) = eitb
∑

k∈Z
pke

it 2πk
λ .

On the other hand,

|ϕ(t+ λ)| =
∣∣Eei(t+λ)X

∣∣ =
∣∣∣∣
∑

k∈Z
pke

i(t+λ)(b+ 2πk
λ

)

∣∣∣∣ =
∣∣∣∣e
i(t+λ)b

∑

k∈Z
pke

it 2πk
λ ei2πk︸︷︷︸

=1

∣∣∣∣ =
∣∣eiλb

∣∣
∣∣∣∣e
itb

∑

k∈Z
pke

it 2πk
λ

∣∣∣∣

= |ϕ(t)|.

Note that if ϕ is of period λ then it is also of period nλ. So there is a smallest λ for which ϕ has period.

Note that if X has a lattice distribution then any finer lattice will also contain all of the probability, however
some points will have zero-mass. Seek to find the λ which makes these gaps the widest.

With this λ we claim that |ϕ(t)| < 1 for 0 < t < λ.

Let λ be the smallest λ such that

P

(
X ∈

{
b+

2πk

λ
: k ∈ Z

})
= 1.

Then

|ϕ(t)| =
∣∣∣∣
∑

k∈Z
pke

it(b+ 2πk
λ

)

∣∣∣∣.

Indeed for t = λ, ∣∣∣∣
∑

k∈Z
pke

iλ(b+ 2πk
λ

)

∣∣∣∣ = |eiλb|
∣∣∣∣
∑

k∈Z
pke

i2πk

∣∣∣∣ = 1.

For t < λ, ∣∣∣∣
∑

k∈Z
pke

it(b+ 2πk
λ

)

∣∣∣∣ = |eitb|
∣∣∣∣
∑

k∈Z
pke

i2πk t
λ

∣∣∣∣.
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Since t/λ < 1 the exponential sees others than a full revolution and so is not equal to 1 for some k. That
implies that the sum cannot be one in mod either as we are adding up numbers of different complex phases
but with mods summing up to one. However, suppose that pk = 0 for where we don’t have a full revolution
(making the sum still 1), then there exists a finer lattice distribution, a contradiction. Hence by the triangle
inequality this is less than 1.

(iii). If |ϕ(λ)| = 1 for all λ ∈ R then by the same proof as start of (ii), for all λ ∈ R

X ∈
{
bλ +

2πk

λ
: k ∈ Z

}

almost surely. Fix a λ1. Then on λ1’s lattice there exists at least 1 point with positive mass. Thus for any
other λ, its lattice must have a point which coincides with this point. So all mass is on this point, call it b,
and X = b almost surely.

ϕ(t) = EeitX = eitb.

(c). ϕaX+b(t) = Eeit(aX+b) = eitbEei(at)X = eitbϕX(at).

(d). ϕX(t) = EeitX = EeitX = Ee−itX .

(e). The uniqueness part will follow from the inversion formula (see later).

(f). ϕX+Y (t) = Eeit(X+Y ) = EeitXEeitY ; separation of expectation follows from independence. �

13.4. Theorem (Bochner). A continuous function w is the characteristic function of a distribution if
and only if

• w(0) = 1;

• w is positive definite, that is, for all t1, . . . , tn ∈ R, for all z1, . . . , zn ∈ C
∑

j,k

w(tj − tk)zjzk ≥ 0.

Proof. Only in the forward direction. Let w be a characteristic function, then we already know that w(0) = 1.
Furthermore,

∑

j,k

w(tj − tk)zjzk =
∑

j,k

Eei(tj−tk)Xzjzk = E

[∑

j

eitjzj
∑

k

e−itkzk

]

= E

[∑

j

eitjzj
∑

k

eitkzk

]

= E

∣∣∣∣
∑

j

eitjzj

∣∣∣∣
2

≥ 0. �

13.5. Theorem. If ϕ(t) is differentiable k times at t = 0 then the

{
kth if k even,

k − 1st if k odd
moment is finite

and for all j ≤
{
k if k even,

k − 1 if k odd

EXj = (−i)j
(
d

dt

)j
ϕ(t)

∣∣∣∣
t=0

.

Proof. None given. �
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13.6. Theorem. If X has all finite moments define

R = lim inf
k→∞

( |EXk|
k!

)− 1
k

.

Then R is the radius of convergence for ϕ. That is, ϕ extends analytically to C within radius R and for
t ∈ R with |t| < R we have that

ϕ(t) =

∞∑

k=0

ik

k!
tkEXk.

Intuitively this follows because of the Taylor expansion of the exponential, and for all t within this radius
the sum and expectation can be switched.

If R = ∞ then ϕ takes the form above and can be completely constructed from its moments, which in
turn implies that the distribution can be reconstructed in this case.

In general it is a nontrivial question, known as the moment problem, whether the moments completely
determine a distribution. The R =∞ case above is a positive example.

Proof. None given. �

13.7. Example. If X ∼ Cauchy(0, 1) then EXk does not exists for all k. ϕ(t) = e−|t| which is not analytic.

13.8. Example (Is this a characteristic function?). Use the properties above to determine.

sin(t)? No. Because sin(0) = 0.

cos(t)? Well

cos(t) =
eit + e−it

2
so it is the characteristic function of a discrete random variable which takes values ±1 with equal probability.

1
2 (1 + cos(t))? Well

1

2
(1 + cos(t)) =

1

2
+
eit

4
+
e−it

4
which will be the characteristic function of a random variable which is 0 w.p. 1/2 and ±1 with probability
1/4.

Any convex combination of characteristic functions is a characteristic function! Let I = 1 with probability
p and I = 0 with probability q = 1− p, independent of random variables X and Y . Let Z = IX +(1− I)Y .
Then Z = X with probability p and Y with probability q. By the partition theorem

ϕZ(t) = EeitZ = pEeitX + qEeitY = pϕX(t) + qϕY (t).

e−t
4
? d2

dt2
e−t4|t=0 = 0 hence EX2 = 0 =⇒ X = 0 almost surely. Then ϕ(t) = 1 – contradiction.

13.9. Lemma (Fubini’s theorem). The order of integration can be swapped if the double integrable of
the absolute value is finite.

13.10. Lemma (Jensen’s inequality for integration). Let f be a convex function and g an integrable
function, then

f

(
1

b− a

∫ b

a
g(x)dx

)
≤ 1

b− a

∫ b

a
f(g(x))dx.
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Proof. Let X ∼ Uniform(a, b), then 1
b−a

∫ b
a g(x)dx = Eg(X). By Jensen’s inequality for expectation

f

(∫ b

a

1

b− ag(x)dx
)

= f(Eg(X)) ≤ Ef(g(X)) =

∫ b

a

1

b− af(g(x))dx.

�

The example to be used below is f(·) = | · |. In this case b− a cancels out, and

∣∣∣
∫ b

a
g(x)dx

∣∣∣ ≤
∫ b

a
|g(x)|dx.

13.11. Theorem (Inversion formula). If ϕ(t) is the characteristic function of a probability measure µ
then

(a) for every a < b ∈ R

µ(a, b) +
1

2
µ{a}+ 1

2
µ{b} = lim

c→∞
1

2π

∫ c

−c

e−ita − e−itb
it

ϕ(t)dt.

(b) if
∫∞
−∞ |ϕ(t)|dt <∞ then F is absolutely continuous, that is, X has continuous distribution and

f(x) =
1

2π

∫ ∞

−∞
e−itxϕ(t)dt.

(c) Similarly, µ{a} = limc→∞
1
2c

∫ c
−c e

−itaϕ(t)dt.

(d) if ϕ is the characteristic function of an integer valued random variable then

p(k) =
1

2π

∫ π

−π
e−itkϕ(t)dt.

Proof. (a). Define

φc =
1

2π

∫ c

−c

e−ita − e−itb
it

ϕ(t)dt =
1

2π

∫ c

−c

e−ita − e−itb
it

∫ ∞

−∞
eitxdF (x)dt.

By Fubini’s theorem, if
1

2π

∫ c

−c

∫ ∞

−∞

∣∣∣∣
e−ita − e−itb

it
eitx

∣∣∣∣dF (x)dt <∞

then swapping the order of integration is permitted. Note that
∣∣∣∣
e−ita − e−itb

it
eitx

∣∣∣∣ =
∣∣∣∣
e−ita − e−itb

it

∣∣∣∣ =
∣∣∣∣
∫ b

a
e−itxdx

∣∣∣∣

≤
∫ b

a
|e−itx|dx ←− Jensen’s for integrals

= b− a.
Therefore,

1

2π

∫ c

−c

∫ ∞

−∞

∣∣∣∣
e−ita − e−itb

it
eitx

∣∣∣∣dF (x)dt ≤
1

2π

∫ c

−c

∫ ∞

−∞
(b− a)dF (x)

︸ ︷︷ ︸∫∞
−∞ dF (x)=1

dt = 2c(b − a) <∞.

Hence we can swap. Therefore,

φc =

∫ ∞

−∞

1

2π

∫ c

−c

e−ita − e−itb
it

eitxdt

︸ ︷︷ ︸
:=ψc

dF (x).
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ψc =
1

2π

∫ c

−c

e−ita − e−itb
it

eitxdt =
1

2π

∫ c

−c

eit(x−a)

it
− eit(x−b)

it
dt.

Note that when we integrate eit/it over some interval [−c, c] it is the same as integrating eit/2it − e−it/2it
(symmetry) hence (using that

∫∞
−∞

sin(u)
u du = π), assuming a < b,

ψc =
1

2π

∫ c

−c

sin(t(x− a))
t

dt− 1

2π

∫ c

−c

sin(t(x− b))
t

dt

=
1

2π

∫ c(x−a)

−c(x−a)

sin(u)

u
du− 1

2π

∫ c(x−b)

−c(x−b)

sin(u)

u
du

=
c→∞





a < b < x 1
2ππ − 1

2ππ = 0,

a < x < b 1
2ππ − 1

2π (−π) = 1,

x < a < b 1
2π (−π)− 1

2π (−π) = 0,

x = a 0− 1
2π (−π) = 1

2 ,

x = b 1
2ππ − 0 = 1

2 .

The various cases come from the positivity of the limits. Can we swap limit and integral? |ψc| ≤ k uniformly
in x and c so yes, by Dominated Convergence.

lim
c→∞

φc = lim
c→∞

∫ ∞

−∞
ψcdF (x) =

∫ ∞

−∞
lim
c→∞

ψcdF (x) = µ(a, b) +
1

2
µ{a}+ 1

2
µ{b}.

(b). Let f(x) = 1
2π

∫∞
−∞ e−itxϕ(t)dt and show that this is the density.

∫ a

b
f(x)dx =

1

2π

∫ a

b

∫ ∞

−∞
e−itxϕ(t)dtdx←− Fubini

∫ a

b

∫ ∞

−∞
|e−itxϕ(t)|dtdx = (b− a)

∫ ∞

−∞
|ϕ(t)|dt

︸ ︷︷ ︸
<∞

=
1

2π

∫ ∞

−∞

∫ a

b
e−itxdxϕ(t)dt

=
1

2π

∫ ∞

−∞

e−ita − e−itb
it

ϕ(t)dt

= lim
c→∞

1

2π

∫ c

−c

e−ita − e−itb
it

ϕ(t)dt

= µ(a, b) +
1

2
µ{a}+ 1

2
µ{b} =⇒ continuity.

Note that by continuity we have that µ{a} = µ{b} = 0. With this the above display proves (b).

(c). Similarly as (a):

1

2c

∫ c

−c
e−itaϕ(t)dt =

1

2c

∫ c

−c
e−ita

∫ ∞

−∞
eitxdF (x)dt

=

∫ ∞

−∞

1

2c

∫ c

−c
eit(x−a)dtdF (x). ←− Fubini

When x = a,

ψc(x) :=
1

2c

∫ c

−c
eit(x−a)dt =

1

2c

∫ c

−c
1dt = 1,

whereas for x 6= a

ψc(x) :=
1

2c

∫ c

−c
eit(x−a)dt =

eic(x−a) − e−ic(x−a)
2ic(x − a) =

sin(c(x− a))
c(x− a) → 0

as c→∞. Also, |ψc(x)| ≤ 1 uniformly in c and x, therefore Dominated Convergence applies and

lim
c→∞

1

2c

∫ c

−c
e−itaϕ(t)dt = lim

c→∞

∫ ∞

−∞
ψc(x)dF (x) =

∫ ∞

−∞
lim
c→∞

ψc(x)dF (x) = µ{a}.
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(d).

1

2π

∫ π

−π
e−itkϕ(t)dt =

1

2π

∫ π

−π
e−itk

∫ ∞

−∞
eitxdF (x)dt

∫ π

−π

∫ ∞

−∞
|e−itkeitx|dF (x)dt = 2π <∞ −→ =

1

2π

∫ ∞

−∞

∫ π

−π
eit(x−k)dtdF (x).

Similarly to the previous calculation, for x = k

ψ(x) :=
1

2π

∫ π

−π
eit(x−k)dt =

1

2π

∫ π

−π
1dt = 1,

whereas for any other integer x,

ψ(x) :=
1

2π

∫ π

−π
eit(x−k)dt =

eiπ(x−k) − e−iπ(x−k)
2πi(x− k) =

sin(π(x− k))
π(x− k) = 0,

and we are not interested in non-integer x as the distribution is integer-valued (dF has only discrete masses
at integers). Plugging this back we have

1

2π

∫ π

−π
e−itkϕ(t)dt =

∫ ∞

−∞
ψ(x)dF (x) = µ{k} = p(k).

�

13.12. Corollary (of (c)). If ϕ(t)→ 0 as |t| → ∞ then µ has no point masses (converse not true).

Proof. Let X and Y have characteristic function ϕ and be independent. Then

ϕX−Y (t) = Eeit(X−Y ) = ϕ(t)ϕ(t) = |ϕ(t)|2.
By the inversion formula (c),

P(X = Y ) = P(X − Y = 0) = lim
c→∞

1

2c

∫ c

−c
e−it0|ϕ(t)|2dt = lim

c→∞
1

2c

∫ c

−c
|ϕ(t)|2dt.

Claim that this limit is 0. Fix ε > 0. As |ϕ(t)|2 → 0 as |t| → ∞ there exists δ > 0 such that |t| > δ implies
|ϕ(t)|2 < ε. Note that for all |t| ≤ δ we have |ϕ(t)|2 ≤ 1 as a requirement of ϕ (properties above).

For all c > δ,

1

2c

∫ c

−c
|ϕ(t)|2dt = 1

2c

∫ −δ

−c
|ϕ(t)|2dt+ 1

2c

∫ δ

−δ
|ϕ(t)|2dt+ 1

2c

∫ c

δ
|ϕ(t)|2dt

≤ (c− δ)ε
2c

+
2δ

2c
+

(c− δ)ε
2c

→ ε

2
+ 0 +

ε

2
= ε.

So P(X = Y ) = 0. Let a ∈ R be arbitrary. Then P(X = a)2 = P(X = a)P(Y = a) ≤ P(X = Y ) = 0. �

14. Weak convergence, Central limit theorem

We start with technicalities to prove the Prokhorov’s Theorem, then the Continuity Lemma which connects
the convergence of characteristic functions to that of distributions. The Central Limit Theorem will then
be an easy consequence of this Lemma.

14.1. Definition (Relatively compact). A family P of distributions is relatively compact if any sequence
(µn) ⊆ P has a subsequence which converges weakly to a probability distribution.

14.2. Example. Fn = 1{X>n} is not relatively compact since any subsequence converges to 0, which is not
a probability distribution.
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14.3. Definition (Tight). A sequence of distributions (µn) is tight if for all ε > 0 there exists a compact
set K (that is bounded and closed in Rn) such that

sup
n∈N

µn(Ω\K) ≤ ε.

14.4. Definition (Generalised distribution function). A generalised distribution function is a function G :
R→ [0, 1] which is

• non-decreasing;

• continuous from the right;

• 0 ≤ limx→−∞G(x) ≤ limx→∞G(x) ≤ 1.

14.5. Lemma. If (Gn) is a sequence of generalised distribution functions then there exists a subsequence
nk and a generalised distribution function G such that for all x ∈ R for which G is continuous

lim
k→∞

Gnk
(x) = G(x).

Proof. Let T be a countably dense subset of R, e.g. Q. Then T = {x1, x2, . . .}, T = R.

(1) As Gn(x1) ∈ [0, 1], Gn has a subsequence G1,n such that G1,n(x1)→ g1.

(2) As G1,n(x2) ∈ [0, 1], G1,n has a subsequence G2,n such that G2,n(x2)→ g2.

(3) As G2,n(x3) ∈ [0, 1], G2,n has a subsequence G3,n such that G3,n(x3)→ g3.

...

Hence we have a subsequence Gn,n which converges for all x ∈ T , namely Gn,n(xk)→ gk. Define

GT (xk) = lim
n→∞

Gn,n(xk) = gk.

We now wish to extend GT onto the whole of R. Define, for x ∈ R,

G(x) = inf{GT (y) : y ∈ T, y > x}.
Claim: G(x) is non-decreasing. Let x1 ≤ x2. Then

G(x1) = inf{GT (y) : y ∈ T, y > x1} ≤ inf{GT (y) : y ∈ T, y > x2} = G(x2).

Claim: G(x) is right continuous. Fix x ∈ R and let (xn) be any sequence such that xn ց x. Well as xn is
decreasing

inf{GT (y) : y ∈ T, y > x1} ≥ inf{GT (y) : y ∈ T, y > x2} ≥ · · · ≥ inf{GT (y) : y ∈ T, y > xn}
and therefore this sequence G(xn) has a limit which we need to show equals G(x). It is clear from mono-
tonicity that limn→∞G(xn) ≥ G(x), so by contradiction suppose

lim
n→∞

G(xn) > G(x) = inf{GT (y) : y ∈ T, y > x}.

Then there must be a T ∋ y > x with GT (y) < limnG(xn), which is a contradiction as for large n, x < xn < y
occurs and T is dense in R.

Claim: The third property of generalised distribution functions is immediate from 0 ≤ GT (y) ≤ 1 for all
y ∈ T .
It remains to show that Gn,n(x)→ G(x) where G continuous. Fix z0 such that G is continuous at z0. Take
y ∈ T with y > z0. Because Gn,n is a generalised distribution function ergo non-decreasing,

lim sup
n→∞

Gn,n(z0) ≤ lim sup
n→∞

Gn,n(y) = GT (y).

Taking the infinum over y ∈ T , y > z0,

lim sup
n→∞

Gn,n(z0) ≤ inf{GT (y) : y ∈ T, y > z0} = G(z0).



PROBABILITY 3 REVISION NOTES 51

Take z1 < z0, since T is dense in R there exists y ∈ T such that z1 < y < z0. By definition G(z1) ≤ GT (y)
so

G(z1) ≤ GT (y) = lim
n→∞

Gn,n(y) = lim inf
n→∞

Gn,n(y) ≤ lim inf
n→∞

Gn,n(z0).

By the continuity at z0, G(z0) = limz1րz0 G(z1) and therefore

G(z0) ≤ lim inf
n→∞

Gn,n(z0).

All in all

G(z0) ≤ lim inf
n→∞

Gn,n(z0) ≤ lim sup
n→∞

Gn,n(z0) ≤ G(z0)

which implies the result. �

14.6. Theorem (Prokhorov). If Ω is a complete separable (contains a countably dense subset) metric
space (e.g. R) then a family of distributions P is relatively compact if and only if it is tight.

Proof. We give the proof for Ω = R. Suppose P is tight. Let Fn be a sequence of distributions in P. Let Fnk

be a subsequence which converges to a generalised distribution function G (exists by the previous lemma).
We show that tightness implies that the limiting distribution is proper.

Fix ε > 0, a < b ∈ R such that

sup
n∈N

µn(R\[a, b]) ≤ ε

which can be done as the sequence µn is tight.

Fact. If f : R → R is an increasing function then the set of points for which f is discontinuous is at most
countable.

Proof of the fact. Let A ⊆ R be the set of points for which f is discontinuous. For x ∈ A, f(x−) < f(x+)
since f is increasing. Hence there exists q ∈ Q such that f(x−) < q < f(x+). Define the function g : A→ Q,
x 7→ q. This construction is not unique, but we claim that for any selection g(x) ∈ Q under this procedure
is injective. Indeed, fix x, y ∈ A such that x 6= y and without loss of generality assume x < y. Then
f(x+) ≤ f(y−) (equality option possible if f constant between x and y). Moreover

f(x−) < g(x) < f(x+) ≤ f(y−) < g(y) < f(y+)

and so g(x) 6= g(y). So g is injective. So A is at most countable.

Thus there exists a′ < a < b < b′ such that G is continuous at a′ and b′. Then for all k

1− ε ≤ µnk
[a, b] ≤ µnk

(a′, b′] = Fnk
(b′)− Fnk

(a′)→ G(a′)−G(b′)
as k →∞ as G is continuous at these points. Taking b′ →∞ and a′ → −∞ we see that for all ε > 0

lim
b′→∞

G(b′)− lim
a′→∞

G(a′) ≥ 1− ε =⇒ = 1.

Conversely, suppose that (µn) is relatively compact. For a contradiction, suppose (µn) is not tight.

Then there exists ε > 0 such that for all K ⊂ Ω compact, supn∈N µn(Ω\K) > ε.

=⇒ ∃ε > 0,∀K compact, ∃µn such that µn(R\K) > ε.

=⇒ ∃ε > 0,∀m,∃µn such that µn(R\[−m,m]) > ε.

Hence there exists a subsequence µnm of µn such that for all m, µnm(R\[−m,m]) > ε.

Since µn is relatively compact there exists a further subsequence µnmk

w−→ µ for some probability measure
µ.

For all m, δ > 0 define fm,δ by
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0

1 1

fm,δ(x)

x
−m m

−m + δ m − δ

Clearly µnmk
(R\[−m,m]) =

∫
R\[−m,m] fm,δ(x)dµnmk

(x) as on here it’s equal to 1. Hence

µnmk
(R\[−m,m]) ≤

∫

R

fm,δ(x)dµnmk
(x)

k→∞−→
∫

R

fm,δ(x)dµ(x)
δց0

ց
∫

R

1R\[−m,m](x)dµ(x) = µ(R\[−m,m]).

The first convergence follows from the definition of weak convergence (convergence of expectation of contin-
uous bounded function, the Lebesgue integral w.r.t. the measure is the expectation).

Since for all m we have µnm(R\[−m,m]) > ε, the weakly convergent subsequence also satisfies this.

ε ≤ µnmk
(R\[−mk,mk]) =⇒ ε ≤ lim sup

k→∞
µnmk

(R\[−mk,mk]).

mk is a strictly increasing sequence and hence for sufficiently large k, mk ≥ m. So eventually, [−m,m] ⊆
[−mk,mk] =⇒ R\[−mk,mk] ⊆ R\[−m,m] =⇒ µnmk

(R\[−mk,mk]) ≤ µnmk
(R\[−m,m]).

Hence

ε ≤ lim sup
k→∞

µnmk
(R\[−mk,mk]) ≤ lim sup

k→∞
µnmk

(R\[−m,m]) ≤ µ(R\[−m,m])
m→∞−→ 0.

The last inequality follows from the construction of fm,δ.

Contradiction as ε > 0. Hence (µn) is tight. �

14.7. Lemma (1). Let (µn) be a tight sequence. If every subsequence of (µn) which is weakly convergent

converges weakly to the same limit µ then µn
w−→ µ.

Proof. Assume that µn 6 w−→ µ. Then there exists a bounded and continuous function f such that
∫
f(x)dµn(x) 6→

∫
f(x)dµ(x).

By definition of convergence in reals, there exists ε > 0 and a subsequence µn′ such that
∣∣∣∣
∫
f(x)dµn′(x)−

∫
f(x)dµ(x)

∣∣∣∣ ≥ ε (⋆)

for all n′.

By Prokhrov’s theorem, as (µn) is tight, it is relatively compact. Hence every sequence in (µn) contains
a subsequence which is weakly convergent to a probability measure. Hence there exists a subsequence n′′

of n′ which is weakly convergent to a probability distribution. By the assumption, µn′′
w−→ µ (all weakly

convergent subsequences
w−→ µ). Hence

∫
f(x)dµn′′(x)→

∫
f(x)dµ(x).

This contradicts (⋆). �
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14.8. Lemma (2). Let (µn) be a tight sequence on R. Let µn have characteristic function ϕn, that is
ϕn(t) =

∫
eitxdµn(x). Then µn converges weakly if and only if for all t ∈ R limn→∞ ϕn(t) exists.

Proof. Let (µn) be tight.

Suppose µn
w−→ µ. Then for all bounded continuous f ,

∫
f(x)dµn(x)→

∫
f(x)dµ(x).

In particular as eitx is bounded (by 1) and continuous

ϕn(t) =

∫
eitxdµn(x)→

∫
eitxdµ(x) = ϕ(t).

Conversely suppose that limn→∞ ϕn(t) exists. As (µn) is tight, it is relatively compact by Prokhorov. Hence

there exists a subsequence µn′
w−→ µ for some probability measure µ.

Suppose that µn 6→ µ (leads to contradiction).

If µn′ is the only weakly convergent subsequence then µn
w−→ µ by lemma 1. So by the negation of lemma 1,

there exists another subsequence of n (not of n′) say n′′ such that µn′′
w−→ ν 6= µ.

As limn→∞ ϕn(t) exists, all subsequences of ϕn(t) converge to the same limit. Therefore

ϕν(t) = lim
n′′→∞

ϕn′′(t) = lim
n→∞

ϕn(t) = lim
n′→∞

ϕn′(t) = ϕµ(t).

Since characteristic functions are unique to measures we have a contradiction. �

14.9. Lemma (3). There exists k > 0 such that for all a > 0
∫

|x|≥ 1
a

dF (x) ≤ k

a

∫ a

0

[
1− Reϕ(t)

]
dt.

Proof.

1

a

∫ a

0

[
1− Reϕ(t)

]
dt =

1

a

∫ a

0

[
1−

∫ ∞

−∞
cos(tx)dF (x)

]
dt

=
1

a

∫ a

0

∫ ∞

−∞

[
1− cos(tx)

]
dF (x)dt ←− as

∫
dF (x) = 1

Fubini −→ =
1

a

∫ ∞

−∞

∫ a

0

[
1− cos(tx)

]
dt dF (x)

=
1

a

∫ ∞

−∞

[
t− sin(tx)

x

]a

t=0

dF (x)

=
1

a

∫ ∞

−∞

[
t− sin(tx)

x

]a

t=0

dF (x)

=
1

a

∫ ∞

−∞
a− sin(ax)

x
dF (x)

=

∫ ∞

−∞
1− sin(ax)

ax︸ ︷︷ ︸
≥0

dF (x)
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≥
∫

|ax|≥1
1− sin(ax)

ax︸ ︷︷ ︸
>0

dF (x)

≥
∫

|ax|≥1

1

k
dF (x)

Reducing the size of the domain of integration makes the value smaller since the integrand is nonnegative
everywhere. Since we never integrate over x = 0 on the reduced domain, for which the integrand is equal to
0, the integrand is strictly greater than 0. Hence there exists k such that the integrand is strictly greater
than k−1. �

14.10. Theorem (Continuity lemma). Let (µn) be a sequence of distributions and (ϕn) the corresponding
sequence of characteristic functions.

(1) If µn
w−→ µ then ϕn(t)→ ϕ(t) as n→∞.

(2) If for all t ∈ R, ϕ(t) = limn→∞ ϕn(t) exists and is continuous at t = 0 then ϕ is the characteristic

function of a probability measure µ and µn
w−→ µ.

Proof. (1) is trivial by the definition of weak convergence, noting that t 7→ eitx is a bounded continuous
function.

To show (2) we

(1) Show that µn is tight;

(2) Invoke lemma 2 (which is the result when tightness is assumed).

By lemma 3,

µn

(
R\

(
−1

a
,
1

a

))
=

∫

|x|≥ 1
a

dµn(x) ≤
k

a

∫ a

0

[
1− Reϕn(t)

]
dt.

Aim to apply DCT. Bounded? |1 − Reϕn(t)| ≤ 1 + |Reϕn(t)| ≤ 1 + |ϕn(t)| ≤ 2 (application of Jensen’s
inequality, above). Furthermore 1− Reϕn(t)→ 1− Reϕ(t) for all t ∈ R by the assumption. By dominated
convergence

µn

(
R\

(
−1

a
,
1

a

))
≤ k

a

∫ a

0

[
1− Reϕn(t)

]
dt

n→∞−→ k

a

∫ a

0

[
1− Reϕ(t)

]
dt

a→0−→ 0.

To prove the last convergence note that ϕ continuous at t = 0 implies that limt→0 ϕ(t) = ϕ(0) = 1. Fix
ε > 0. Then there exists δ > 0 such that |t| < δ implies |1− ϕ(t)| < ε.

So |1 − Reϕ(t)| = |Re(1 − ϕ(t))| =
√
|1− ϕ(t)|2 − |Im(1− ϕ(t))|2 ≤ |1 − ϕ(t)| < ε too. Moreover, for any

a < δ,
∣∣∣∣
k

a

∫ a

0

[
1− Reϕ(t)

]
dt

∣∣∣∣ ≤
k

a

∫ a

0
|1− Reϕ(t)|dt ≤ kε

a

∫ a

0
dt = kε.

So the integral can be made arbitrarily small.

So for fixed ε there exists sufficiently small a such that µn(R\(−1/a, 1/a)) < ε. Choose any compact set K
such that (−1/a, 1/a) ⊂ K, then µn(R\K) < µn(R\(−1/a, 1/a)) < ε. Then supn∈N µn(R\K) ≤ ε. Hence
(µn) is tight.

Applying lemma 2 gives the result. �
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14.11. Lemma. If E|X|n <∞ for some n ≥ 1 then as t→ 0

ϕ(t) =

n∑

k=0

(it)k

k!
EXk +

(it)n

n!
o(1).

Proof. By the Taylor expansion of exp we have for some random Θ1,Θ2; |Θ1| ≤ 1, |Θ2| ≤ 1,

ϕ(t) = EeitX

= E

[ n−1∑

k=0

(itX)k

k!
+

(itX)n

n!

(
cos(Θ1tX) + i sin(Θ2tX)

)]

= E

[ n∑

k=0

(itX)k

k!
+

(itX)n

n!

(
cos(Θ1tX) + i sin(Θ2tX)− 1

)]

=
n∑

k=0

(it)k

k!
EXk +

(it)n

n!
E

[
Xn

(
cos(Θ1tX) + i sin(Θ2tX)− 1

)]
.

Note that | cos(Θ1tX) + i sin(Θ2tX) − 1| ≤ 3 and goes to 0 as t→ 0 hence by DCT the whole expectation
goes to 0 as t→ 0 (as EXn <∞) so equal to o(1). �

14.12. Theorem (Weak law of large numbers). Let (Xn) be an i.i.d. sequence of random variables with
EXi = m finite. Then

1

n

n∑

k=1

Xk
P−→ m.

Proof. Show converges weakly and then that it converges in probability.

Let Sn =
∑n

k=1Xk. Then

ϕSn
n

(t) = ϕSn

(
t

n

)
=

n∏

i=1

ϕXi

(
t

n

)
=

[
ϕX1

(
t

n

)]n
=

(
1 +

itm

n
+
ito(1)

n

)n
→ eitm.

Hence 1
n

∑n
k=1Xk

w−→ m. The following fact implies the result.

Fact. Weak convergence and convergence in probability are equivalent when the limit is a constant.

Proof of the fact. Suppose Xn
w−→ c. Then

P(|Xn − c| > ε) ≤ P(Xn ≤ c− ε) + P(Xn > c+ ε) = Fn(c− ε) + 1− Fn(c+ ε)→ 0.

Conversely suppose Xn
P−→ c. Then

Fn(c− ε) + 1− Fn(c+ ε) ≤ P(Xn ≤ c− ε) + P(Xn ≥ c+ ε) = P(|Xn − c| ≥ ε)→ 0,

or lim supn(Fn(c− ε)+1−Fn(c+ ε)) ≤ 0, lim infn(Fn(c+ ε)−Fn(c− ε)) ≥ 1 which forces limn Fn(c+ ε) = 1
and limn Fn(c− ε) = 0 by 0 ≤ Fn(c+ ε), Fn(c− ε) ≤ 1. �

14.13. Theorem (Global central limit theorem). Let (Xn) be an i.i.d. sequence of random variables
with E|Xk|2 <∞ ( =⇒ E|Xk| <∞ by Cauchy-Schwarz or Lyapunov). Put EXi = m, VarXi = σ2 and
Sn =

∑n
k=1Xk. Then

Sn − nm
σ
√
n

w−→ N (0, 1).
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Proof. By the continuity lemma we show P(Sn−nm
σ
√
n
≤ a)→ Φ(a).

Case 1. m = 0, σ = 1.

ϕ Sn√
n

= ϕSn

(
t√
n

)
=

n∏

k=1

ϕXi

(
t√
n

)
=

[
ϕXi

(
t√
n

)]n
=

[
1 +

itm√
n︸︷︷︸

m=0

− t
2

2n
EX2
︸︷︷︸
=1

− t
2

2n
o(1)

]n
→ e−

t2

2 ,

the Standard Normal characteristic function.

Case 2. General m and σ.

Sn − nm
σ
√
n

=

∑n
k=1

Xk−m
σ√

n
.

Each term has mean 0 and variance 1 so the previous case applies. �

14.14. Theorem (Poisson central limit theorem). Let X ∼ Poisson(λ). Then

X − λ√
λ

w−→ N (0, 1).

Proof. Can prove using characteristic functions (homework) or using a sneaky trick and the central limit
theorem.

Note X
d
=

∑⌊λ⌋
k=1Xk where Xk ∼ Poisson(λ/⌊λ⌋). Then use central limit theorem. �

14.15. Theorem (Cramèr-Berry-Essèen). Let Xi be i.i.d., EXi = 0; E|Xi|2 = σ2 and E|Xi|3 < ∞.
Then there exists c ∈ [ 1√

2π
, 0.8) such that

sup
a

∣∣∣∣P
(
Sn
σ
√
n
< a

)
− Φ(a)

∣∣∣∣ ≤
cE|X1|3
σ3
√
n
.

No proof given.

14.16. Example. Xi ∼ Bernoulli(1/2). Note that this isn’t centered! Let X̃i = Xi − EXi. Then EX̃i =

0;VarX̃i = VarX = 1/4. Take n = 10 i.i.d. copies of these. On one hand, P(S10 ≤ 6) = 0.8281 by direct
calculation with the Binomial(10, 1/2) mass function. On the other hand, the CLT gives

P(S10 ≤ 6) = P(S10 ≤ 6.5) = P

(S10 − 10 · 12
1
2 ·
√
10

≤ 6.5− 10 · 12
1
2 ·
√
10

)
≃ Φ

(6.5 − 10 · 12
1
2 ·
√
10

)
≃ 0.8389.

The difference is 0.8389 − 0.8281 = 0.0108. The Cramèr-Berry-Essèen bound would be, with EX̃3
i = 1/8,

0.8/8

1/8·
√
10
≃ 0.25 for this difference.

14.17. Theorem (Local central limit theorem). Xi i.i.d., EXi = 0; VarXi = σ2 <∞ with Xi absolutely
continuous with bounded density function. Then

lim
n→∞

sup
x

∣∣∣∣
d

dx
P

(
Sn
σ
√
n
≤ x

)
− 1√

2π
e−

x2

2

∣∣∣∣ = 0.

That is, the densities become close.

No proof given.
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14.18. Theorem (Lindeberg central limit theorem). Let {Xn,m : n ∈ N, 1 ≤ m ≤ Nn} be a set of random
variables such that

• EXn,m = 0;

• VarXn,m = σ2n,m <∞;

• Sn :=
∑Nn

m=1Xn,m;

• For fixed n, Xn,1,Xn,2, . . . ,Xn,Nn are independent;

• σ2n := VarSn =
∑Nn

m=1 σ
2
n,m;

• The Lindeberg condition holds, that is, for all ε > 0,

lim
n→∞

1

σ2n

Nn∑

m=1

E(X2
n,m; |Xn,m| > εσn) = 0.

Then P(Sn/σn ≤ a)→ Φ(a) as n→∞.

No proof given.

14.19. Remark (Intuition behind the Lindeberg condition). Fix ε > 0.

σ2n,m
σ2n

=
EX2

n,m

σ2n

=
E(X2

n,m; |Xn,m| > εσn) + E(X2
n,m; |Xn,m| ≤ εσn)

σ2n

≤
E(X2

n,m; |Xn,m| > εσn) + ε2σ2n
σ2n

=
1

σ2n
E(X2

n,m; |Xn,m| > εσn) + ε2.

The Lindeberg condition states that this quantity stays small, in other words no individual variance σ2n,m
plays a macroscopically visible role in the sum σ2n.


