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1. ASEP: Interacting particles

Bernoulli(o) distribution
Particles try to jump

to the right with rate p,
to the left with rate g =1 — p < p.

The jump is suppressed if the destination site is occupied by another
particle.

The Bernoulli(o) distribution is time-stationary for any ( ).
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Hydrodynamics (briefly)

Let 7" and X be some large-scale time and space parameters.

~ Set initially o = o(7T" = 0, X)) to be the density at position x = X /e.

(Changes on the large scale.)

~ o(T', X)) is the density of particles after a long time ¢t = T /e at

position z = X /e. It satisfies, with a :=p —q,

6% + 6%&[ (1 —-0)] =0 (inviscid Burgers)
8% + al[l — 20] - 8% = 0 (while smooth)
9 dxX(T) 8 d
_ : = — (7T, X(T)) =0
OT T dT" 090X dT (7, X ()

~ The characteristic speed C(p) : = a[l — 20].
(0 is constant along X(T) = C(p).)
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2. ASEP: Surface growth
h
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h(t) = height of the surface above x.

ha(t) — hz(0) = net number of particles passed above x.

hy+(t) = net number of particles passed through the moving window
at Vit (Vv eR).

58



3. Growth fluctuations

h,t

59



3. Growth fluctuations

h,t

T

60



3. Growth fluctuations

h,t

hyv

61



3. Growth fluctuations

h,t

hyv

. t=0
0 T
Ferrari - Fontes 1994: Iim Yarlhwi() — const - [V = (o)

t—00 t



3. Growth fluctuations

h,t

L -

. t=20
0 T
Ferrari - Fontes 1994: tlim Var(};‘/t(t)) = const - |V — C'(o)|
— 00

~» Initial fluctuations are transported along the characteristics.

63
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h,t

L -

. t=20
0 T
Ferrari - Fontes 1994: tlim Var(};‘/t(t)) = const - |V — C'(o)|
— 00

~» Initial fluctuations are transported along the characteristics.
~ How about V = C(p)7
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3. Growth fluctuations

Conjecture:

im Var(hc(g)t(t))

Jim 23 = [sg. non triviall.

Theorem ( ). For any , and any g < p,

o Var(hen®)

0< |Itrllolgf 2/3
_ Var(hc(g>t(t))

= H?Ligp t2/3

< Q.

Corollary: The corresponding scaling of the diffusivity is also proved.
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3. Growth fluctuations

Limit distributions (not yet controlling the second moment) in terms
of the Tracy-Widom distribution were found by Baik, Deift and Jo-
hansson 1999, Johansson 2000, and Ferrari and Spohn 2006 for the
totally asymmetric exclusion (TASEP: p =1, ¢ = 0).
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Limit distributions (not yet controlling the second moment) in terms
of the Tracy-Widom distribution were found by Baik, Deift and Jo-
hansson 1999, Johansson 2000, and Ferrari and Spohn 2006 for the
totally asymmetric exclusion (TASEP: p =1, ¢ = 0).

Method was: Last passage percolation, heavy combinatorics and asymp-
totic analysis.

~~ We needed to get rid of these tools. Premises: Cator and Groene-
boom 2006 (Hammersley's process), B., Cator and Seppadlainen 2006
(TASEP, last passage).
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4. The second class particle

Bernoulli(o) distribution echept for O

Coupling: A single discrepancy is always conserved — the second class
particle. Its location at time t is Q(t).
Theorem: E(Q(t)) = C(o)t ( ), and

Var(hy(t)) = const - E|Vt — Q(t)].
The proof is based on ideas of Balint, he said these ideas were standard.
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Deviations of Q(t)

Deviations of hc(g)(t)
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Deviations of Q(t)

Deviations of hc(g)(t)
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Thank you.
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