
Order of current variance in the simple exclusion process

Márton Balázs
(University of Wisconsin - Madison)

(Budapest University of Technology and Economics)

Joint work with

Timo Seppäläinen
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1. ASEP: Interacting particles

-
x

◦ ◦ • • • ◦ ◦•
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Bernoulli(̺) distribution

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site is occupied by another

particle.

The Bernoulli(̺) distribution is time-stationary for any (0 ≤ ̺ ≤ 1).

Any translation-invariant stationary distribution is a mixture of Bernoullis.
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Hydrodynamics (briefly)

Let T and X be some large-scale time and space parameters.

 Set initially ̺ = ̺(T = 0, X) to be the density at position x = X/ε.

(Changes on the large scale.)

 ̺(T , X) is the density of particles after a long time t = T/ε at

position x = X/ε. It satisfies, with a := p − q,

∂

∂T
̺ +

∂

∂X
a[̺(1 − ̺)] = 0 (inviscid Burgers)

∂

∂T
̺ + a[1 − 2̺] ·

∂

∂X
̺ = 0 (while smooth)

∂

∂T
̺ +

dX(T )

dT
·

∂

∂X
̺ =

d

dT
̺(T , X(T )) = 0

 The characteristic speed C(̺) := a[1 − 2̺].

(̺ is constant along Ẋ(t) = C(̺).)
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32



Hydrodynamics (briefly)

Let T and X be some large-scale time and space parameters.

 Set initially ̺ = ̺(T = 0, X) to be the density at position x = X/ε.

(Changes on the large scale.)

 ̺(T , X) is the density of particles after a long time t = T/ε at

position x = X/ε. It satisfies, with a := p − q,

∂

∂T
̺ +

∂

∂X
a[̺(1 − ̺)] = 0 (inviscid Burgers)

∂

∂T
̺ + a[1 − 2̺] ·

∂

∂X
̺ = 0 (while smooth)

∂

∂T
̺ +

dX(T)

dT
·

∂

∂X
̺ =

d

dT
̺(T , X(T )) = 0

 The characteristic speed C(̺) := a[1 − 2̺].

(̺ is constant along Ẋ(T) = C(̺).)
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2. ASEP: Surface growth

-
x
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hx(t) = height of the surface above x.
hx(t) − hx(0) = net number of particles passed above x.
hV t(t) = net number of particles passed through the moving window
at V t (V ∈ R).
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3. Growth fluctuations

-

6

x
t = 0

h t

0

0

Ferrari - Fontes 1994: lim
t→∞

Var(hV t(t))
t = const · |V − C(̺)|

 Initial fluctuations are transported along the characteristics.

 How about V = C(̺)?
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3. Growth fluctuations

Conjecture:

lim
t→∞

Var(hC(̺)t(t))

t2/3
= [sg. non trivial].

Theorem (B., Seppäläinen): For any 0 < ̺ < 1, and any q < p,

0 < lim inf
t→∞

Var(hC(̺)t(t))

t2/3

≤ lim sup
t→∞

Var(hC(̺)t(t))

t2/3
< ∞.

Corollary: The corresponding scaling of the diffusivity is also proved.
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3. Growth fluctuations

Limit distributions (not yet controlling the second moment) in terms

of the Tracy-Widom distribution were found by Baik, Deift and Jo-

hansson 1999, Johansson 2000, and Ferrari and Spohn 2006 for the

totally asymmetric exclusion (TASEP: p = 1, q = 0).

Method was: Last passage percolation, heavy combinatorics and asymp-

totic analysis.

 We needed to get rid of these tools. Premises: Cator and Groene-

boom 2006 (Hammersley’s process), B., Cator and Seppäläinen 2006

(TASEP, last passage).
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4. The second class particle

-
x

◦

•
�

�

�



↑
-3 -2 -1 0 1 2 3 4

Bernoulli(̺) distribution

Coupling: A single discrepancy is always conserved = the second class

particle. Its location at time t is Q(t).

Theorem: E(Q(t)) = C(̺)t (characteristic speed), and

Var(hV t(t)) = const · E|V t − Q(t)|.

The proof is based on ideas of Bálint, he said these ideas were standard.

71



4. The second class particle

-
x

◦ ◦ • •◦ ◦ ◦•

◦ ◦ •• • ◦ ◦•
�

�

�



↑
-3 -2 -1 0 1 2 3 4

Bernoulli(̺) distribution except for 0

Coupling: A single discrepancy is always conserved = the second class

particle. Its location at time t is Q(t).

Theorem: E(Q(t)) = C(̺)t (characteristic speed), and

Var(hV t(t)) = const · E|V t − Q(t)|.

The proof is based on ideas of Bálint, he said these ideas were standard.

72



4. The second class particle

-
x

◦ ◦ • •◦ ◦ ◦•

◦ ◦ •• • ◦ ◦•
�

�

�



↑
-3 -2 -1 0 1 2 3 4

Bernoulli(̺) distribution except for 0

Coupling: A single discrepancy is always conserved = the second class

particle. Its location at time t is Q(t).

Theorem: E(Q(t)) = C(̺)t (characteristic speed), and

Var(hV t(t)) = const · E|V t − Q(t)|.

The proof is based on ideas of Bálint, he said these ideas were standard.

73



4. The second class particle

-
x

◦ ◦ ◦• •◦ ◦ ◦•

◦ ◦ •• • ◦ ◦•

↑
-3 -2 -1 0 1 2 3 4

Bernoulli(̺) distribution except for 0

Coupling: A single discrepancy is always conserved = the second class

particle. Its location at time t is Q(t).

Theorem: E(Q(t)) = C(̺)t (characteristic speed), and

Var(hV t(t)) = const · E|V t − Q(t)|.

The proof is based on ideas of Bálint, he said these ideas were standard.

74



4. The second class particle

-
x

◦ ◦ ◦• •◦ ◦ ◦•

◦ ◦ •• • ◦ ◦•

↑
-3 -2 -1 0 1 2 3 4

Bernoulli(̺) distribution except for 0

Coupling: A single discrepancy is always conserved = the second class

particle. Its location at time t is Q(t).

Theorem: E(Q(t)) = C(̺)t (characteristic speed), and

Var(hV t(t)) = const · E|V t − Q(t)|.

The proof is based on ideas of Bálint, he said these ideas were standard.

75



4. The second class particle

-
x

◦ ◦ ◦• •◦ ◦ ◦•

◦ ◦ •• • ◦ ◦•

↑
-3 -2 -1 0 1 2 3 4

Bernoulli(̺) distribution except for 0

Coupling: A single discrepancy is always conserved = the second class

particle. Its location at time t is Q(t).

Theorem: E(Q(t)) = C(̺)t (characteristic speed), and

Var(hV t(t)) = const · E|V t − Q(t)|.

The proof is based on ideas of Bálint, he said these ideas were standard.

76



4. The second class particle

-
x

◦ ◦ ◦• • ◦ ◦•

◦ ◦ •• • ◦ ◦•
�

�

�



↑
-3 -2 -1 0 1 2 3 4

Bernoulli(̺) distribution except for 0

Coupling: A single discrepancy is always conserved = the second class

particle. Its location at time t is Q(t).

Theorem: E(Q(t)) = C(̺)t (characteristic speed), and

Var(hV t(t)) = const · E|V t − Q(t)|.

The proof is based on ideas of Bálint, he said these ideas were standard.

77



4. The second class particle

-
x

◦ ◦ ◦• • ◦ ◦•

◦ ◦ • ◦• • ◦ ◦•

↑
-3 -2 -1 0 1 2 3 4

Bernoulli(̺) distribution except for 0

Coupling: A single discrepancy is always conserved = the second class

particle. Its location at time t is Q(t).

Theorem: E(Q(t)) = C(̺)t (characteristic speed), and

Var(hV t(t)) = const · E|V t − Q(t)|.

The proof is based on ideas of Bálint, he said these ideas were standard.

78



4. The second class particle

-
x

◦ ◦ ◦• • ◦ ◦•

◦ ◦ • ◦• • ◦ ◦•

↑
-3 -2 -1 0 1 2 3 4

Bernoulli(̺) distribution except for 0

Coupling: A single discrepancy is always conserved = the second class

particle. Its location at time t is Q(t).

Theorem: E(Q(t)) = C(̺)t (characteristic speed), and

Var(hV t(t)) = const · E|V t − Q(t)|.

The proof is based on ideas of Bálint, he said these ideas were standard.

79



4. The second class particle

-
x

◦ ◦ ◦• • ◦ ◦•

◦ ◦ • ◦• •◦ ◦•

↑
-3 -2 -1 0 1 2 3 4

Bernoulli(̺) distribution except for 0

Coupling: A single discrepancy is always conserved = the second class

particle. Its location at time t is Q(t).

Theorem: E(Q(t)) = C(̺)t (characteristic speed), and

Var(hV t(t)) = const · E|V t − Q(t)|.

The proof is based on ideas of Bálint, he said these ideas were standard.

80



4. The second class particle

-
x

◦ ◦ ◦• • ◦ ◦•

◦ ◦ • ◦• •◦ ◦•
�

�

�



↑
-3 -2 -1 0 1 2 3 4

Bernoulli(̺) distribution except for 0

Coupling: A single discrepancy is always conserved = the second class

particle. Its location at time t is Q(t).

Theorem: E(Q(t)) = C(̺)t (characteristic speed), and

Var(hV t(t)) = const · E|V t − Q(t)|.

The proof is based on ideas of Bálint, he said these ideas were standard.

81



4. The second class particle

-
x

◦ ◦ ◦• • ◦ ◦•

◦ ◦ • ◦• •◦ ◦•
�

�

�



↑
-3 -2 -1 0 1 2 3 4

Bernoulli(̺) distribution except for 0

Coupling: A single discrepancy is always conserved = the second class

particle. Its location at time t is Q(t).

Theorem: E(Q(t)) = C(̺)t (characteristic speed), and

Var(hV t(t)) = const · E|V t − Q(t)|.

The proof is based on ideas of Bálint, he said these ideas were standard.

82



4. The second class particle

-
x

◦ ◦ ◦• • ◦ ◦•

◦ ◦ • ◦• •◦ ◦•
�

�

�



↑
-3 -2 -1 0 1 2 3 4

Bernoulli(̺) distribution except for 0

Coupling: A single discrepancy is always conserved = the second class

particle. Its location at time t is Q(t).

Theorem: E(Q(t)) = C(̺)t (characteristic speed), and

Var(hV t(t)) = const · E|V t − Q(t)|.

The proof is based on ideas of Bálint, he said these ideas were standard.

83



4. The second class particle

-
x

◦ ◦ ◦• • ◦ ◦•

◦ ◦ • ◦• •◦ ◦•
�

�

�



↑
-3 -2 -1 0 1 2 3 4

Bernoulli(̺) distribution except for 0

Coupling: A single discrepancy is always conserved = the second class

particle. Its location at time t is Q(t).

Theorem: E(Q(t)) = C(̺)t (characteristic speed), and

Var(hV t(t)) = const · E|V t − Q(t)|.

The proof is based on ideas of Bálint, he said these ideas were standard.

84



4. The second class particle

-
x

◦ ◦ ◦• • ◦ ◦•

◦ ◦ • ◦• •◦ ◦•
�

�

�



↑
-3 -2 -1 0 1 2 3 4

Bernoulli(̺) distribution except for 0

Coupling: A single discrepancy is always conserved = the second class

particle. Its location at time t is Q(t).

Theorem: E(Q(t)) = C(̺)t (characteristic speed), and

Var(hV t(t)) = const · E|V t − Q(t)|.

The proof is based on ideas of Bálint, he said these ideas were standard.

85



Deviations of Q(t) Deviations of hC(̺)(t)

Couplings

The above thm.

Thank you.
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