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1 Introduction

We describe some of the spatial stationarity structures in 2-dimensional last passage percolation. We will define
the model, then consider the special case where the distribution satisfies a peculiar distributional identity which
can be interpreted as a spatial Markov property with an explicit distribution. As an application we then show
how to derive the KPZ scaling order upper bound via probabilistic means.

These notes will certainly not give a full overview of the field; we will not touch the methods of integrable
probability, and even the probabilistic side of the field has much more to it than the range we consider. Our
modest aim here is to provide an idea, from the probabilistic point of view, how stationarity arises and what
it is good for. These notes are largely based on [1]. The reader is referred to The corner growth model with
exponential weights section of [15] (see also [17]) for a much more comprehensive reading on the topics, and
to [16] for a gentle introduction to the integrable probability side; both by Timo Seppäläinen. A few further
references will be provided as they naturally arise in the text.

2 Last passage percolation

Last passage percolation models (LPP) concern the largest total weight that can be collected by a path between
two points in space, among a random field of weights. As such, this of course doesn’t make sense as an infinite
excursion, or an infinite number of loops would beat every finite path in such competition. Hence a restriction
is imposed on allowed paths.

For this note our space will be the integer lattice Z2, weights will sit on the vertices of this lattice, and will
be non-negative i.i.d. distributed. The restriction will be that paths must be directed: they can only make up
or right steps.

As the setup is translation-invariant, we always assume without loss of generality, unless otherwise stated,
that our path starts from the origin (0, 0) ∈ Z2.

Definition 2.1. Fixing the endpoint at (m, n) with m > 0, n > 0 integers, the set of directed paths to this
point is

Πm,n : =
{
π =

(
π0 = (0, 0), π1, π2, . . . , πm+n = (m, n)

)
: πk+1 − πk = (1, 0) or (0, 1) for 0 ≤ k < m+ n

}
.

The i.i.d. non-negative weights are denoted by ωij (at lattice site (i, j)).

Definition 2.2. The last passage time of the point (m, n) is

Gm,n : = max
π∈Πm,n

m+n∑

k=1

ωπk
(m, n ≥ 0).

For G0,0 we interpret the empty sum as zero: G0,0 = 0.

In words, this is the largest total weight collected along any directed path π from the origin to (m, n).
Due to the directed nature of the paths, any weight outside the non-negative quadrant Z≥0×Z≥0 is irrelevant

for Gm,n. Hence we can equivalently define the past passage percolation on Z≥0 × Z≥0 only, instead of Z2.
By looking at paths ending at (i− 1, j) or (i, j − 1), we easily see, with ∨ meaning “larger of”,

(2.1) Gi,j = (Gi−1,j ∨Gi,j−1) + ωi,j (i, j > 0).

Assuming G−1,j = Gi,−1 = 0, we can extend this display to all of i, j ≥ 0.
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2.1 Corner growth model

An alternative representation of LPP considers the set

A(t) : =
{
(i, j) : Gi,j ≤ t

}
∩
(
Z≥0 × Z≥0

)

of occupied points at time t ≥ 0. By definition A(0) = {(0, 0)}, and a new point (i, j) can get occupied ωi,j

time after both its South and West neighbours got occupied.
Notice that picking ωi,j from an Exponential distribution makes A(t) into a continuous time Markov chain.

This forms the basis of further representations of such LPP in terms of M/M/1 queues and the Totally Asym-
metric Simple Exclusion Process, which we do not explore here.

2.2 Increments of last passage times

Definition 2.3. The horizontal and vertical increments of last passage times are defined respectively by

Ii,j : = Gi,j −Gi−1,j i > 0 ≤ j,

Ji,j : = Gi,j −Gi,j−1 i ≥ 0 < j.

In the corner growth representation this is how much time it takes for the occupied region to extend one step
to the East in a given row, or to the North in a given column, respectively.

Lemma 2.4. The increments satisfy

(2.2)
Ii,j = (Ii,j−1 − Ji−1,j)

+ + ωi,j ,

Ji,j = (Ji−1,j − Ii,j−1)
+ + ωi,j .

Proof. Plug (2.1) into the definition of Ii,j :

Ii,j = (Gi−1,j ∨Gi,j−1)−Gi−1,j + ωi,j

= (Gi,j−1 ∨Gi−1,j)−Gi−1,j−1 − (Gi−1,j −Gi−1,j−1) + ωi,j

=
(
(Gi,j−1 −Gi−1,j−1) ∨ (Gi−1,j −Gi−1,j−1)

)
− (Gi−1,j −Gi−1,j−1) + ωi,j

= (Ii,j−1 ∨ Ji−1,j)− Ji−1,j + ωi,j

= (Ii,j−1 − Ji−1,j ∨ 0) + ωi,j = (Ii,j−1 − Ji−1,j)
+ + ωi,j .

The proof of the second identity is similar.

2.3 Stationary Exponential LPP

We start with a distributional fact a little bit out of the blue, then comment on how something like this could
be discovered.

Proposition 2.5. Let 0 < ̺ < 1 and U ∼ Exp(1− ̺), V ∼ Exp(̺), ω ∼ Exp(1) be mutually independent. Then

(2.3) I : = (U − V )+ + ω ∼ Exp(1− ̺), J : = (V − U)+ + ω ∼ Exp(̺), X : = U ∧ V ∼ Exp(1)

and these three are mutually independent. Here ∧ means “the smaller of”.

Proof. Consider a rate 1 homogeneous Poisson process and colour each of its marks red or blue independently
of everything with respective probabilities 1− ̺ and ̺. Then X is realised as the time of the first mark of any
colour and U (V ) as the time of the first red (blue, respectively) mark. It already follows that X ∼ Exp(1).
Notice that U −V depends on the colour the first mark and the future of the coloured Poisson process after X .
Both of these are independent of X itself, hence X and the pair

(
(U −V )+, (V −U)+

)
are independent of each

other. This in turn gives that the triplet
[
X,

(
(U − V )+, (V − U)+

)
, ω

]
is mutually independent. Therefore,

(2.4)
[
X,

(
(U − V )+, (V − U)+

)
, ω

] d
=

[
ω,

(
(U − V )+, (V − U)+

)
, X

]
.

Trivially,
(U, V, ω) =

(
(U − V )+ +X, (V − U)+ +X, ω

)
, and

(I, J, X) =
(
(U − V )+ + ω, (V − U)+ + ω, X

)

and the statement immediately follows from (2.4).

Homework 2.6. Show this identity the analytic way, using joint moment generating functions.
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Independence of the min and the difference characterizes the Exponential and the Geometric distribution,
see Crawford [7] for details.

Next we consider Exponential weights ωi,j , but slightly modify the parameters to fit the setup in Proposition
2.5.

Definition 2.7. The stationary exponential LPP model with parameter 0 < ̺ < 1 is defined by mutually
independent weights

ωi,0 ∼ Exp(1− ̺), ω0,j ∼ Exp(̺), ωi,j ∼ Exp(1), (i, j > 0)

and last passage times as in Definition 2.2 as before but with these modified weights.

Definition 2.8. Take a doubly infinite South-East path (σℓ)ℓ∈Z indexed by ℓ. South-East means that σℓ+1 −
σℓ = (0, −1) or (1, 0). We require σ in the non-negative quadrant: σℓ ∈ Z≥0 × Z≥0. This also includes the
possibility that σ is just the union of the two coordinate axes.

The interior of the set enclosed by σ is

B(σ) : = {(i, j) : 0 ≤ (i, j) < σℓ for some ℓ ∈ Z},
where “<” is domination in both coordinates, (i, j) < (a, b) iff i < a and j < b. B(σ) is empty when σ is the
union of the two coordinate axes.

Definition 2.9. We now introduce the auxiliary random variables

(2.5) Xi−1,j−1 : = Ii,j−1 ∧ Ji−1,j (i, j > 0)

with ∧ meaning “the smaller of”.

With all this preparation, we can now prove stationarity of the stationary LPP.

Theorem 2.10. In the stationary LPP, for any coordinates (i, j) where we defined the below,

• Ii,j ∼ Exp(1− ̺),

• Ji,j ∼ Exp(̺),

• Xi,j ∼ Exp(1).

Moreover, for any South-East path σ, all of the Ii,j variables when part of σ (that is, (i − 1, j) and (i, j) are
both in σ), the Ji,j variables when part of σ (that is, (i, j − 1) and (i, j) are both in σ), and Xi,j variables for
(i, j) ∈ B(σ) are mutually independent.

Remark 2.11. It is very important to notice that independence of the last passage time increments is lost at
the moment σ fails to be South-East, in other words if σℓ < σk for any two ℓ, k ∈ Z. In particular, there is no
way to access (m, n) > (0, 0) from the origin along independent last passage time increments.

Remark 2.12. The mapping of LPP to M/M/1 queues or totally asymmetric exclusion takes this theorem to
Burke’s theorem for reversibility of M/M/1 queues, or the marginal Poisson property of a tagged particle (as
well as of a tagged hole) in totally asymmetric exclusion. Hence this theorem is sometimes referred to as Burke’s
theorem even in the LPP setting.

Proof. A.s. there is a unique path from the origin to any point (i, 0) or (0, j). Hence the last passage time to
such a point is just the sum of ω’s along one of the axes. The statement therefore immediately follows when σ

is the union of the coordinate axes.
We proceed by induction from here. Assume a South-East path σ as in Figure 1 and that the theorem holds

for this path. Find a South-West corner in σ that is, some (i, j) with (i− 1, j), (i− 1, j − 1), (i, j − 1) each in
σ. The I and J increments along σ, as well as the X variables in B(σ), only depend on the ω weights in B(σ)
and along σ. Hence ωij is independent of all of these variables. Moreover, by the inductive assumption, the
pair (Ii,j−1, Ji−1,j) is also mutually independent of the rest of the I’s and J ’s along σ, and the X ’s in B(σ).

Now comes Proposition 2.5 with

U = Ii,j−1, V = Ji−1,j , ω = ωi,j , I = Ii,j , J = Ji,j , X = Xi−1,j−1.

Notice that (2.3) then exactly matches the constructions (2.2) and (2.5). Hence the triplet (Ii,j , Ji,j , Xi−1,j−1)
has the desired joint distribution. Furthermore, these variables are fixed via (2.2) and (2.5) by (Ii,j−1, Ji−1,j , ωij),
which was independent of the rest of the I’s and J ’s along σ, and the X ’s in B(σ), hence the independence
structure is maintained.

We see that we successfully flipped a South-West corner into a North-East one, obtaining an extended
South-East path from σ this way. As any σ with finite B(σ) can be reached by a number of such corner flips
from the path of the coordinate axes, the proof is done for those. For a σ not touching one or both of the axes,
notice that any finite segment of it with a finite subset of B(σ) is identical to the same parts of a South-East
path with finite B, for which the proof holds.
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Figure 1: The corner flip induction step. Vertices in B(σ) are marked •.

The i.i.d. increments structure immediately gives the Law of Large Numbers for the last passage times in
the stationary model.

Corollary 2.13. For any m, n ≥ 0,

(2.6) EGm,n =
m

1− ̺
+

n

̺
.

Fix real parameters 0 ≤ x, y and a sequence
(
m(N), n(N)

)
of endpoints with m(N)

N
→ x and n(N)

N
→ y. Then

(2.7) lim
N→∞

Gm(N),n(N)

N

a.s.−→ x

1− ̺
+

y

̺
.

Proof. By the definition of the increments,

(2.8) Gm,n =

m∑

i=1

Ii,0 +

n∑

j=1

Jm,j.

Each of these sums features i.i.d. Exponential variables, with respective parameters 1 − ̺ and ̺. The mean
identity follows immediately, and classical Strong Law of Large Numbers (SLLN) applies on the first sum in the
above limit. The second sum is slightly tricky as the summands change in m as well as j. A fourth moment
proof of the SLLN applies though.

Homework 2.14. Work out the details of proving (2.7).

Remark 2.15. It is very important to notice (again) that the two sums in (2.8) are very dependent, hence
such arguments are not helpful towards proving any finer limits than the law of large numbers.

We see from (2.7) that the rescaled last passage time is constant among rescaled endpoints x and y if they
are on the curve (1 − ̺)y + ̺x = const. In some sense this plays the role of a “ball” of fixed “radius”: it is
equally hard to reach points on this line in this hydrodynamic scaling. This is the shape for the stationary
model, a boring, straight line. To see something interesting, one removes the artificial boundary and keeps i.i.d.
Exp(1) weights ωi,j all over Z≥0 × Z≥0 including the boundaries.

The boundary weights ωi,0 ∼ Exp(1 − ̺) and ω0,j ∼ Exp(̺) are heavier than the bulk Exp(1) weight
distribution. Hence the longest LPP path can be expected to stick to the boundary for some time after
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departing from the origin. With a fixed endpoint (m, n), tuning the parameter ̺ changes whether the South or
the West boundary is more preferable. There should be a particular value ̺0 where the path is “undecided” as
to which of the two boundaries it should favour. At this parameter one would expect the smallest improvement
to the last passage time from the boundary, as the path is not really sticking to it for a long time. Minimising
(2.7) in ̺, one finds

(2.9)
y

x
=

̺20
(1 − ̺0)2

,

and solving this for ̺0 gives ̺0 =
√
y√

x+
√
y
. Plugging this back to (2.7) indeed recovers the shape

(√
x +

√
y
)2

for the model without modified boundaries. [17] discusses such connections in rigour and great detail, in these
short notes we do not pursue this further.

Reverting point of view, for a fixed parameter value ̺0 the direction (2.9) is called the characteristic direction
for the stationary LPP. Once pushed through the connection between LPP and either M/M/1 queues or the
Totally Asymmetric Simple Exclusion Process, (2.9) maps to the so-called characteristic velocity in those models.

To finish this section, we mention that much of this research was inspired back then by Cator and Groene-
boom’s seminal paper [3] for the so-called Hammersley process, based on similar stationarity structures. Other
stationary LPP models exist as well, see Ciech and Georgiou [5, 6]. For a systematic exploration of stationarity
in polymer models, see Chaumont and Noack [4]. The exponential increments I and J also arise without the
stationary boundaries as Busemann functions i.e., limits of differences of last passage times from a far away
common starting point in direction (2.9). See e.g. [17] for details.

3 Fluctuation bounds

To demonstrate ways of using stationarity, we provide parts of the arguments towards KPZ-scaling of last
passage times in the Exponential LPP. These are old (hence relatively simple) probabilistic arguments from [1].
Notice that such techniques have recently been significantly improved by Emrah, Georgiou, Janjigian, Ortmann
and Seppäläinen [9, 8].

There exists a vast amount of literature of KPZ scaling limits using methods of integrable probability, tools
that evolved from combinatorial, algebraic and random matrix theory techniques. We do not consider this area
here, just notice that, while the nature of these arguments is different, integrable probability methods often
apply for models that exhibit stationary properties as the one seen above.

As noticed before, Gm,n is two sums of i.i.d. Exponentials added together. However, these two sums are
highly dependent on each other, making the fluctuations of Gm,n difficult to handle. We proceed with showing
some steps towards finding the order of these fluctuations.

3.1 A coupling of boundary weights

For later use, we perturb the South boundary as follows. Recall that the variables ωi,0 are i.i.d. Exponential(1−̺)
distributed with our parameter 0 ≤ ̺ ≤ 1. Fix ̺ < λ < 1 and let, for each i > 0,

(3.1) ξi,0 : =
1− ̺

1− λ
· ωi,0.

Homework 3.1. Show that ξi,0 are i.i.d. Exponential(1− λ) distributed, and that

(3.2) Var(ξi,0 − ωi,0) =
( 1

1− λ
− 1

1− ̺

)2

.

The i.i.d. Exponential(̺) (West) and Exponential(1 − ̺) (South) boundary is stationary in the sense that
the increments Ii,1 are again i.i.d. Exponential(1 − ̺) distributed. One might ask whether the above coupling
also keeps stationarity for the LPP with the ξi,0 boundaries. This can be asked in a marginal sense for ξi,0 only.
The answer is no, as we have not changed the West boundary from parameter ̺ to λ accordingly. This can be
helped however by pushing the origin to the far left, leaving only a South boundary, in which case the answer is
yes. A more interesting question is whether we have stationarity between increments Ii,0 and Ii,1 jointly for the
LPP using the ωi,0 boundary weights, and the one using ξi,0. The answer is no, not with this simple coupling.
The correct coupling to achieve this is known but is more complicated, see Fan and Seppäläinen [10] and, for a
scaling limit, Busani [2]. We do not go into the details as the above simple coupling will work for our purposes.
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3.2 Exit point from the boundary

We already saw a taster of arguments that consider the effects of the boundary weights on the last passage
times. We will exploit these further now. The longest path from the origin to (m, n) proceeds along the heavier
weights of the boundary for some time, then makes a brave step and exits into the bulk Z>0 × Z>0. Hence its
optimal property can be split into two parts: it optimises over where to exit the boundary, and then over its
geometry in the bulk. This motivates the definitions below.

Definition 3.2. For an integer −n ≤ x ≤ m, let

Ux : = Gx+,x− =






x∑

i=1

ωi,0, if x ≥ 0,

−x∑

j=1

ω0,j , if x ≤ 0

with the convention that empty sums are zero.

This is the weight collected on the boundary up to (x, 0) on the horizontal axis when x > 0, and to (0, −x)
on the vertical axis when x < 0.

For a path that happens to exit the boundary at (x+, x−) 6= (0, 0), we then note the most possible weight
collected in the bulk by

Definition 3.3.

(3.3) Ax : = max
π

m+n−|x|∑

k=1

ωπk
,

where the maximum is over North-East paths π starting at π0 = (x+, x−), ending at πm+n−|x| = (m, n) and
satisfying π1 > (0, 0) (i.e., the first step’s both coordinates are positive; this π really exits the boundary in the
first step).

The last passage time then satisfiesGm,n = maxx 6=0(Ux+Ax). Moreover, by the continuity of the Exponential
distribution, there is an a.s. unique maximiser x 6= 0, which we denote by Z:

Gm,n = max
x 6=0

(Ux +Ax) = UZ +AZ .

The next lemma is a fundamental building block in proving KPZ-scaling of fluctuations, and is here to
demonstrate the power of stationarity in this business.

Lemma 3.4.

VarGm,n =
n

̺2
− m

(1 − ̺)2
+

2

1− ̺
· EUZ+

=
m

(1− ̺)2
− n

̺2
+

2

̺
· EU−Z− .

Proof. For brevity, define the increments along the sides of the box as

W : = G0,n, N : = Gm,n −G0,n, E : = Gm,n −Gm,0, S : = Gm,0.

W and S are just the i.i.d. Exp(̺) and i.i.d. Exp(1− ̺) boundaries respectively, which are also independent of
each other. By definition, Gm,n = W +N = S + E , and by Theorem 2.10, N and E are independent. Notice,
however, that every other pair of W , N , E and S is dependent. We have

VarGm,n = Var(W +N ) = VarW + VarN + 2Cov(W , N )

= VarW + VarN + 2Cov(S, N ) + 2Cov(E , N )− 2Cov(N , N )

= VarW − VarN + 2Cov(S, N ).

Next we fix 1− ̺ > ε > 0, and introduce the new South boundary according to (3.1) with λ = ̺+ ε. While
all other ω≥0,>0’s are left unchanged, we now have two LPP models on the same probability space, the original
one and this new one which we will denote by a super-index ε, having the modified South boundary.

The total increment along the new South boundary, Sε, is the sum of m i.i.d. Exp(1−̺− ε) variables which
is Gamma distributed. Hence its density for s > 0 is

fSε(s) =
(1− ̺− ε)msm−1 · e−(1−̺−ε)s

(m− 1)!
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with its derivative w.r.t. ε
∂εfSε(s) = sfSε(s)− m

1− ̺− ε
· fSε(s).

The sum of Exponential variables could as well be seen as a Poisson process. A particular feature of the
Poisson process is the order statistics property: given the sum S, the (ωi,0)0<i≤m) variables have the same joint
distribution for all parameter values. Hence fixing the value S, the original LPP model and the one modified
by ε are indistinguishable. That implies E(N ε | Sε = s) = E(N |S = s), which we can use as

∂ε EN ε
∣∣
ε=0

= ∂ε EE(N ε | Sε)
∣∣
ε=0

= ∂ε

∞∫

0

E(N ε | Sε = s)fSε(s) ds
∣∣∣
ε=0

= ∂ε

∞∫

0

E(N |S = s)fSε(s) ds
∣∣∣
ε=0

=

∞∫

0

E(N |S = s)∂εfSε(s)
∣∣
ε=0

ds

=

∞∫

0

E(N |S = s)sfS0(s) ds−
∞∫

0

E(N |S = s)
m

1− ̺
· fS0(s) ds

= E(NS) − m

1− ̺
EN = Cov(N , S).

Next we concentrate on this derivative using the exit point Z. When modifying the South boundary from
S to Sε, only Gm,n can change in N = Gm,n −G0,n, and this can happen in two ways: the exit point Z for the
longest path doesn’t move, but the longest path might collect more weight on the South boundary, or the exit
point changes as well. This is the split we make below.

N ε −N = (N ε −N ) · 1{Zε = Z}+ (N ε −N ) · 1{Zε 6= Z}
= (Uε

Zε − UZ) · 1{Zε = Z}+ (N ε −N ) · 1{Zε 6= Z}
= (Uε

Z − UZ) · 1{Zε = Z}+ (N ε −N ) · 1{Zε 6= Z}
= (Uε

Z − UZ) + (N ε −N − Uε
Z + UZ) · 1{Zε 6= Z}.

By (3.1), the first term is

Uε
Z − UZ = Uε

Z+ − UZ+ =
( 1− ̺

1− ̺− ε
− 1

)
UZ+ =

ε

1− ̺− ε
· UZ+ .

For the second term, notice that N ε −N ≤ Sε −S and, since the modified South is heavier, that Uε
Z ≥ UZ .

Hence

E
[
(N ε −N − Uε

Z + UZ) · 1{Zε 6= Z}
]
≤ E

[
(Sε − S) · 1{Zε 6= Z}

]
≤

(
E(Sε − S)2

) 1
2 ·

(
P{Zε 6= Z}

) 1
2 .

The first factor is, as above, ε
1−̺−ε

·
(
ES2

) 1
2 , which is O(ε).

Finally, we show that the probability is O(ε). The first observation is that Z is the a.s. unique optimiser of
the exit point in the original LPP, hence for any k 6= Z, AZ + UZ > Ak + Uk a.s. (see (3.3)).

The modified South is heavier, hence more preferable for the longest path (notice that the bulk passage
times Ak are not modified). This implies Zε ≥ Z. The event Zε 6= Z occurs exactly when there is an index
Z < k ≤ m that achieves the optimum in the modified LPP. That is, a.s.

{Zε 6= Z} = {Aε
Z + Uε

Z < Aε
k + Uε

k for some Z < k ≤ m}
= {AZ + Uε

Z < Ak + Uε
k for some Z < k ≤ m}

= {AZ + Uε
Z < Ak + Uε

k , Ak + Uk < AZ + UZ for some Z < k ≤ m}
= {Uk − UZ < AZ −Ak < Uε

k − Uε
Z for some Z < k ≤ m}

⊆ {Uk − Ui < Ai −Ak < Uε
k − Uε

i for some 0 ≤ i < k ≤ m}.

A union bound hence gives P{Zε 6= Z} ≤ ∑
0≤i<k≤m P{Uk − Ui < Ai − Ak < Uε

k − Uε
i }. Looking at one of
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these probabilities, and using that the boundary is independent of the bulk passage times Ak,

P{Uk − Ui < Ai −Ak < Uε
k − Uε

i } = EP{Uk − Ui < Ai −Ak < Uε
k − Uε

i |Ai −Ak}
≤ sup

x>0
P{Uk − Ui < x < Uε

k − Uε
i }

= sup
x>0

P

{
Uk − Ui < x <

1− ̺

1− ̺− ε
· (Uk − Ui)

}

= sup
x>0

P

{
x
(
1− ε

1− ̺

)
< Uk − Ui < x

}
,

which is O(ε) due to the bounded density of the Gamma distribution.
Combining the above displays proves the first line of the lemma. The second line is proved similarly by

looking at Cov(W , E).

3.3 Comparison of last passage times and a Taylor step

Next comes a sketch of the main steps of proving the upper bound for the order of VarGm,n in the stationary
model. This follows [1] so the gaps can be filled from there. A much more powerful version was recently
constructed by Emrah, Georgiou and Ortmann [8] based on a genius insight to refine Lemma 3.4 by Emrah,
Janjigian and Seppäläinen [9] (also noticed earlier by Rains [14]).

To concentrate on the essence of the arguments, we omit integer parts and pretend at many calculations
that coordinates (i, j) are continuous.

Fix 0 < ̺ < 1 and recall the characteristic direction ̺2

1−̺2 of (2.9). This is where the longest path is not
expected to spend a long time on the boundaries. In other directions there will be a macroscopic distance
travelled on the boundary, which results in picking up normal scaling of fluctuations. We introduce the scaling
parameter t and coordinates

(3.4) m(t) = (1− ̺)2t and n(t) = ̺2t

(notice how we already lost integer parts), hence quantities G (last passage time to (m, n)), Z (exit point of
the longest path to (m, n)), Ax (last passage time to (m, n) in the bulk, after exiting the boundary at x) will
all just receive an argument (t).

The proof works with comparison to LPP with another density λ > ̺, while the coordinates (3.4) are fixed
with ̺. Such comparisons are already familiar from (3.1), which is used on the South boundary as before. This
time, we also couple the weights on the West boundary in a similar way,

ξ0,j : =
̺

λ
ω0,j ∼ i.i.d. Exp(λ) (j > 0).

Hence the λ parameter LPP model that uses weights ξ>0,0, ξ0,>0 and ω>0,>0 is also stationary. However,
the corner (3.4) is not characteristic for this one as (3.4) uses the parameter ̺, rather than λ, for finding the
characteristic position. Quantities of the λ-LPP will be denoted by a superscript λ. Notice that the bulk last
passage times Ax(t) are common between the two models, they do not notice the boundary values.

Since Gλ(t) optimizes its path, for any 1 ≤ z ≤ m(t) we have Uλ
z +Az(t) ≤ Gλ(t). This is used below, where

we start looking into the distribution of the exit point Z(t) (in the ̺-LPP model). For any u > 0,

{Z(t) > u} = {∃z > u : Uz +Az(t) = G(t)}
⊆ {∃z > u : Uz +Gλ(t)− Uλ

z ≥ G(t)}
= {∃z > u : Uλ

z − Uz ≤ Gλ(t)−G(t)}
⊆ {Uλ

u − Uu ≤ Gλ(t)−G(t)}.

In the last step we used that the South weights are heavier in the λ process than with the ̺ parameter, hence
Uλ
z − Uz − (Uλ

u − Uu) ≥ 0.

We now center our random variables, for any X with a finite mean, X̃ : = X − EX . We have

(3.5) {Z(t) > u} ⊆
{
Ũλ
u − Ũu ≤ G̃λ(t)− G̃(t)− E[Uλ

u − Uu −Gλ(t) +G(t)]
}
.

The expectations are known by U ’s being the sum of i.i.d. variables, and via (2.6). Disregarding integer parts
and using (3.4),

(3.6)

E[Uλ
u − Uu −Gλ(t) +G(t)] =

u

1− λ
− u

1− ̺
− (1− ̺)2t

1− λ
− ̺2t

λ
+

(1− ̺)2t

1− ̺
+

̺2t

̺

= t− u

1− ̺
− (1− ̺)2t− u

1− λ
− ̺2t

λ
.
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The case u ≥ (1 − ̺)2t might give some trouble, but it is not important and can be handled so we do not deal
with this here. To make our bounds the sharpest, we want this expectation to be as large as possible. To this
order, we maximise this display in λ for a given u < (1− ̺)2t. The maximum is achieved when

̺2t

λ2
=

(1 − ̺)2t− u

(1− λ)2

for a 0 < λ < 1. When ̺2t = (1 − ̺)2t− u, the solution is λ = 1
2 , otherwise

λ1,2 =
−2̺2t±

√
4̺2t2 + 4̺2t(t− 2̺t− u)

2(t− 2̺t− u)
= ̺ · ̺∓

√
(1− ̺)2 − u

t

̺2 −
(
(1− ̺)2 − u

t

) =
̺

̺±
√
(1− ̺)2 − u

t

.

The solution in the interval (0, 1) is obtained by the + sign. Hence from now on we’ll use

λ =
̺

̺+
√
(1 − ̺)2 − u

t

>
̺

̺+
√
(1− ̺)2

= ̺,
1

λ
= 1 +

√
(1 − ̺)2 − u

t

̺

1− λ =

√
(1− ̺)2 − u

t

̺+
√
(1 − ̺)2 − u

t

,
1

1− λ
= 1 +

̺√
(1 − ̺)2 − u

t

.

Plugging this back to (3.6),

E[Uλ
u − Uu −Gλ(t) +G(t)] = t− u

1− ̺
−
[
(1− ̺)2t− u

]
− ̺t

√
(1− ̺)2 − u

t
− ̺2t− ̺t

√
(1 − ̺)2 − u

t

= 2̺(1− ̺)t− u
̺

1− ̺
− 2̺t

√
(1 − ̺)2 − u

t

= 2̺(1− ̺)t

(
1− 1

2

1

(1− ̺)2
u

t
−
√
1− 1

(1− ̺)2
u

t

)
.

The next lemma is essentially a second order Taylor expansion. These always appear with fluctuation arguments,
recall e.g. the proof of the Central Limit Theorem. Somewhere deep, it is the convexity of the shape of LPP
that allows this Taylor expansion.

Lemma 3.5. For any 0 < a < 1,

1− 1

2
a−

√
1− a ≥ 1

8
a2.

Proof. We want to show
√
1− a ≤ 1− 1

2a− 1
8a

2. This is equivalent to

1− a ≤ 1 +
1

4
a2 +

1

64
a4 − a− 1

4
a2 +

1

8
a3 or 0 ≤ 1

64
a4 +

1

8
a3.

With a = 1
(1−̺)2

u
t
in this lemma we arrive to

E[Uλ
u − Uu −Gλ(t) +G(t)] ≥ ̺

4(1− ̺)3
· u

2

t
.

With this to our help we split (3.5):

(3.7)

{Z(t) > u} ⊆
{
Ũλ
u − Ũu ≤ G̃λ(t)− G̃(t)− ̺

4(1− ̺)3
· u

2

t

}

⊆
{
Ũλ
u − Ũu ≤ − ̺

8(1− ̺)3
· u

2

t

}
∪
{
G̃λ(t)− G̃(t) ≥ ̺

8(1− ̺)3
· u

2

t

}
.
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3.4 A loop of inequalities

We further restrict u from u < (1 − ̺)2t to u < 3
4 (1 − ̺)2t; again, the complement can be handled and is not

relevant. On both events of the union in (3.7), Chebyshev’s inequality applies. For the first one, by (3.2),

P

{
Ũλ
u − Ũu ≤ − ̺

8(1− ̺)3
· u

2

t

}
≤ Var

(
Uλ
u − Uu

)
· 64(1− ̺)6

̺2
· t

2

u4

= u
( 1

1− λ
− 1

1− ̺

)2

· 64(1− ̺)6

̺2
· t

2

u4

= u
(
1 +

̺√
(1− ̺)2 − u

t

− 1

1− ̺

)2

· 64(1− ̺)6

̺2
· t

2

u4

≤ u
( ̺√

1
4 (1− ̺)2

− ̺

1− ̺

)2

· 64(1− ̺)6

̺2
· t

2

u4
= 64(1− ̺)4

t2

u3
.

Chebyshev’s inequality on the second event of (3.7) gives

P

{
G̃λ(t)− G̃(t) ≥ ̺

8(1− ̺)3
· u

2

t

}
≤ Var

(
Gλ(t)−G(t)

)
· 64(1− ̺)6

̺2
· t

2

u4
.

Homework 3.6. For any random variables X and Y with finite second moments, Var(X + Y ) ≤ 2VarX +
2VarY .

Using Lemma 3.4, it turns out that VarGλ(t) can be bounded by VarG(t) plus an error term that’s smaller
order than the quantities we are dealing with. Hence we can proceed with the above display as

≤ const · VarG(t) · t
2

u4
+ error = const · EUZ+(t) ·

t2

u4
+ error.

In the last step we used Lemma 3.4 with the characteristic position (3.4).
Combining it all, we now have

P{Z+(t) > u} = P{Z(t) > u} ≤ const · t
2

u3
+ const · EUZ+(t) ·

t2

u4
+ error.

The weight UZ+(t) collected on the South axis and the exit point Z+(t) are not that much different, as the
former is the sum of the latter many i.i.d. exponentials. A large deviation argument connects these two rather
strongly. Hence one can further transform the last display into

P{UZ+(t) > y} ≤ const · t
2

y3
+ const · EUZ+(t) ·

t2

y4
+ error.

Now, let us abbreviate E = EUZ+(t). With v = y

E
,

E =

∞∫

0

P{UZ+(t) > y} dy = E

∞∫

0

P{UZ+(t) > Ev} dv ≤ E

∞∫

1
2

P{UZ+(t) > Ev} dv + E

2

≤ const ·E
∞∫

1
2

t2

E3v3
dv + const · E

∞∫

1
2

E
t2

E4v4
dv + error +

E

2
= const · t2

E2
+ error +

E

2
.

Believe me that the error is not relevant, and rearrange to E3 ≤ const · t2. Lemma 3.4 then transfers the result
to VarG(t).

4 A few more homeworks on stationarity

Homework 4.1 (The reversed LPP). Fix (m, n) and define Hi,j = Gm,n−Gi,j for all 0 ≤ i ≤ m and 0 ≤ j ≤ n.
Show that the Xi,j variables of (2.5) act as i.i.d. weights for the last passage times Hi,j looked backward from
the corner (m, n). Notice that in the stationary version even the boundary and the bulk weight distributions
work perfectly for this reversed process.
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Homework 4.2 (Competition interface). The competition interface was explored by Ferrari, Pimentel and
Martin [13, 11, 12]. The idea is this: colour site (1, 0) red and (0, 1) blue. The longest path to any (i, j) will
first visit one of these two sites. Colour (i, j) accordingly. Doing this for all sites (i, j) partitions Z+ ×Z+ into
two sets of vertices. The boundary between these sets is called the competition interface. Describe the local
evolution of this path in terms of the last passage times Gi,j .

Homework 4.3 (Longest path and competition interface). Show that the competition interface is exactly the
longest path in the reversed LPP.

Homework 4.4 (Stationarity on steroids). This one is from Emrah, Janjigian and Seppäläinen [9] in this
context, although it first appeared in Rains [14]. Consider the model of Section 3.1:

• the South boundary is i.i.d. Exp(1− λ);

• the West boundary is i.i.d. Exp(̺);

• the bulk weights are i.i.d. Exp(1).

This model is not stationary unless λ = ̺. Call its last passage times Ki,j . Prove

E e(̺−λ)Km,n =
(1− λ

1− ̺

)m

·
(̺
λ

)n

.

It is very difficult to say anything about a non-stationary last passage time like Km,n. And yet here is a
completely explicit form of its moment generating function at ̺ − λ. Unfortunately this function cannot
be evaluated this way at any other point. Nevertheless, this identity is the starting point of a fundamental
improvement of the probabilistic method for last passage time fluctuations.
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