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The asymmetric zero range process

We need r non-decreasing.

Examples:

◮ ‘Classical’ ZRP: r(ωi) = 1{ωi > 0}.

◮ Independent walkers: r(ωi) = ωi .
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Translation invariant measures

No surprise that constant density is stationary:

ASEP: ηi ∼ iid. Bernoulli(̺).

Classical ZRP: ωi ∼ iid. Geometric( 1
1+̺

).

Independent walkers: ωi ∼ iid. Poisson(̺).

These are the only extremal translation-invariant distributions.
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Hydrodynamics: asymmetric ZRP

Take p > q = 1 − p, and AZRP with right rate p · r(ωi), left rate

q · r(ωi).

d

dτ
Eωi = pEr(ωi−1) + qEr(ωi+1)− Er(ωi)
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Take p > q = 1 − p, and AZRP with right rate p · r(ωi), left rate

q · r(ωi).

d

dτ
Eωi = pEr(ωi−1) + qEr(ωi+1)− Er(ωi)

= q
(

Er(ωi+1)− Er(ωi)
)

− p
(

Er(ωi)− Er(ωi−1)
)

.

Ballistic scaling (zoom out and speed up by factor L):

◮ ̺(t , x) = EωLx(Lt);

◮ also define G(̺) = E̺r(ω):

d

d(τ/L)
Eωi = qL

(

Er(ωi+1)− Er(ωi)
)

− pL
(

Er(ωi)− Er(ωi−1)
)

∂

∂t
̺(t , x) = (q − p)

∂

∂x
G(̺(t , x)).
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Hydrodynamics: asymmetric ZRP

∂

∂t
̺(t , x) + (p − q)

∂

∂x
G(̺(t , x)) = 0

Classical ZRP: G(̺) = E̺r(ω) = E̺1{ω > 0} = ̺

1+̺

concave, Burgers-type equation.

Independent walkers: G(̺) = E̺r(ω) = E̺ω = ̺
linear, transport equation.

1 2 3 4 5 6 7 8 i

• • • • • •

The stationary solution is constant density,

linear slope.
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2
, and SZRP with right rate 1
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Hydrodynamics: symmetric ZRP

Take p = q = 1
2
, and SZRP with right rate 1

2
r(ωi), left rate

1
2 r(ωi).

d
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Er(ωi+1)− Er(ωi)

Diffusive scaling:

◮ ̺(t , x) = EωLx(L
2t);

◮ also define G(̺) = E̺r(ω):

d
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Hydrodynamics: symmetric ZRP

∂

∂t
̺(t , x) =

1

2

∂2

∂x2
G(̺(t , x))

Classical ZRP: G(̺) = E̺r(ω) = E̺1{ω > 0} = ̺

1+̺

concave, nonlinear heat equation.

Independent walkers: G(̺) = E̺r(ω) = E̺ω = ̺
linear, heat equation.

1 2 3 4 5 6 7 8 i

• • • • • •

The stationary solution is constant density,

linear slope, or linearly changing G with cur-

rent.
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Hills

Can we model sedimentation and erosion processes with these

surfaces?

Issues:

◮ Hills are not always straight ↔ translation invariance.

◮ Most hillslopes are rather stationary ↔ particle current.
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Convex hills

Wikipedia
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Concave hills

Stockphotos4free
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Product blocking measures

Solution: block particles (no current) and make their rates

asymmetric (non-constant density).

Can we have a reversible stationary distribution in product form:

µ(ω) =
⊗

i

µi(ωi);

µ(ω) · rate
(

ω → ωiyi+1
)

= µ(ω iyi+1
)

· rate
(

ωiyi+1 → ω
)

?

Here

ωiyi+1 = ω − δi + δi+1.



Models Classical Bl.meas. Hills ASEP ZRP More

Asymmetric simple exclusion

µ(η) · rate
(

η → ηiyi+1
)

= µ(ηiyi+1
)

· rate
(

ηiyi+1 → η
)

ASEP: µi ∼ Bernoulli(̺i);
•

η

̺i(1 − ̺i+1) · p = (1 − ̺i)̺i+1 · q

Solution: ̺i =
(p

q
)i−c

1 + (p
q )

i−c
=

1

(q
p )

i−c + 1

u u u u u u u u u u u u u
u

u
u

u
u

u
u

u u u u u u u u u u u u

i

̺i

0

1

c
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u
u
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Asymmetric zero range process

µ(ω) · rate
(

ω → ωiyi+1
)

= µ(ω iyi+1
)

· rate
(

ωiyi+1 → ω
)

?

AZRP, classical:

µi(ωi)µi+1(ωi+1) · p1{ωi > 0} = µi(ωi − 1)µi+1(ωi+1 + 1) · q

Solution: µi ∼ Geometric
(

1 −
(p

q

)i−const)

.
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Asymmetric zero range process

µ(ω) · rate
(

ω → ωiyi+1
)

= µ(ω iyi+1
)

· rate
(

ωiyi+1 → ω
)

?

AZRP, independent walkers:

µi(ωi)µi+1(ωi+1) · pωi = µi(ωi − 1)µi+1(ωi+1 + 1) · q(ωi+1 + 1)

Solution: µi ∼ Poisson
((p

q

)i−const)

.
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Further models

In fact product blocking measures are very general.

◮ ASEP

◮ K -exclusion (!)

◮ All zero range processes (“classical”, independent walkers,

q-zero range)

◮ Misanthrope / bricklayers processes

Other models can be stood up:

◮ ASEP

◮ q-exclusion

◮ Katz-Lebowitz-Spohn model
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Product blocking measures

They are also very handy, due to reversibility.

Take a stationary, reversible Markov chain. Cut any of its

edges. It stays reversible stationary w.r.t. the same distribution.

In our case: freeze the boundaries to obtain a stationary hill

slope.
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Microscopic model

Our choice: AZRP with frozen boundaries. p > q: convex

1 2 3 L

• • • • ••

0

H

Particles jump
to the right with rate p · r(ωi)
to the left with rate q · r(ωi).
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Microscopic model

Our choice: AZRP with frozen boundaries. p < q: concave

1 2 3 L

•• • • • •

0

H

Particles jump
to the right with rate p · r(ωi)
to the left with rate q · r(ωi).
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Notice:

◮ The height of the hill H is conserved, the product measure

is not ergodic.

◮ One-site marginals, given H, are in general not explicit.

◮ Except for independent walkers, where ωi are Binomial.
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Microscopic model

Notice:

◮ The height of the hill H is conserved, the product measure

is not ergodic.

◮ One-site marginals, given H, are in general not explicit.

◮ Except for independent walkers, where ωi are Binomial.

We won’t be bothered by this.



Models Classical Bl.meas. Hills Micro Hydro

Hydrodynamics

Work in progress. . .

u u u u u u u u u u u u u
u

u
u

u
u

u
u

u u u u u u u u u u u u

i

̺i

0

1

c

A blocking measure is a microscopic object. Here is its scaling

limit: x

̺(x)

, not very interesting.
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Hydrodynamics

d

dτ
Eωi =

1

2

(

Er(ωi−1)− 2Er(ωi) + Er(ωi+1)
)

−
γ

L

(

Er(ωi+1)− Er(ωi−1)
)

.

which dictates diffusive scaling:

◮ p = 1
2 + γ

L , q = 1
2 − γ

L ;

◮ ̺(t , x) = EωLx(L
2t);

◮ also define G(̺) = E̺r(ω):

d

d(τ/L2)
Eωi =

L2

2

(

Er(ωi−1)− 2Er(ωi) + Er(ωi+1)
)

− γL
(

Er(ωi+1)− Er(ωi−1)
)

,

∂

∂t
̺(t , x) =

1

2

∂2

∂x2
G(̺(t , x))− 2γ

∂

∂x
G(̺(t , x)), (0 < x < 1).
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Hydrodynamics

◮ p = 1
2
+ γ

L
, q = 1

2
− γ

L
;

◮ ̺(t , x) = EωLx(L
2t);

◮ also define G(̺) = E̺r(ω):

How about the boundaries?
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Hydrodynamics

◮ p = 1
2
+ γ

L
, q = 1

2
− γ

L
;

◮ ̺(t , x) = EωLx(L
2t);

◮ also define G(̺) = E̺r(ω):
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∂
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G(̺(t , 1))− 2γG(̺(t , 1))

Convection-diffusion type equation with Robin boundary.

Doing the proper derivation is work in progress.

The time-stationary solution G(̺(x)) = Ce
4γx is consistent with

the stationary blocking measure.
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Dynamics

Space scale: x ∈ [0, 1] ⇔ we ∈ hill.

Problem 1: The stationary hillslope will not tell us the time

scale.

 Observe relaxation to stationarity in Nature and in the PDE.
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Problem 2: Geologists want a prediction for

the hill particle flux, and the distance trav-

elled by hill particles.

Notice: Hill particles 6= our particles.

This is not part of the core argument, in-

stead, is done by heuristics:

◮ Erosion flow speed ∼ average deposition rate pEr .

◮ Time of hill particle spent in the flow to be picked as a

constant or function of the slope ̺.

◮ Average hill particle flux is the same across the hill

(reversibility), but this is not provided by the model.

One can then give an expected distance travelled by a hill

particle. Thank you.
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