Order of current variance in the simple exclusion process

Márton Balázs (University of Wisconsin - Madison) (Budapest University of Technology and Economics)

> Joint work with Timo Seppäläinen (University of Wisconsin - Madison)

> Terschelling, September 2006

1. ASEP: Interacting particles

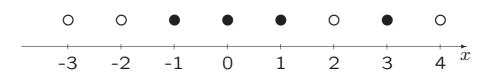
2. ASEP: Surface growth

3. Growth fluctuations

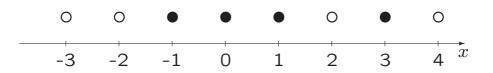
4. The second class particle

5. The upper bound

6. The lower bound



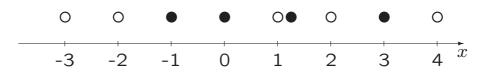
 $Bernoulli(\varrho)$ distribution



 $Bernoulli(\varrho)$ distribution

Particles try to jump

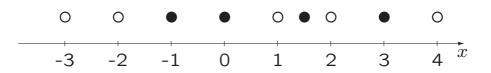
to the right with rate p, to the left with rate q = 1 - p < p.



 $Bernoulli(\varrho)$ distribution

Particles try to jump

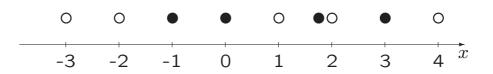
to the right with rate p, to the left with rate q = 1 - p < p.



 $Bernoulli(\varrho)$ distribution

Particles try to jump

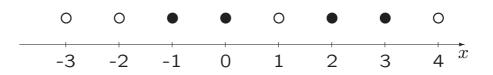
to the right with rate p, to the left with rate q = 1 - p < p.



 $Bernoulli(\varrho)$ distribution

Particles try to jump

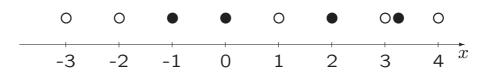
to the right with rate p, to the left with rate q = 1 - p < p.



 $Bernoulli(\varrho)$ distribution

Particles try to jump

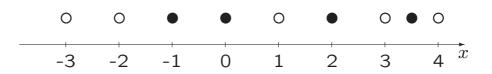
to the right with rate p, to the left with rate q = 1 - p < p.



 $Bernoulli(\varrho)$ distribution

Particles try to jump

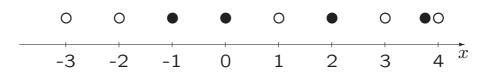
to the right with rate p, to the left with rate q = 1 - p < p.



 $Bernoulli(\varrho)$ distribution

Particles try to jump

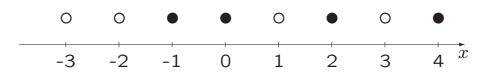
to the right with rate p, to the left with rate q = 1 - p < p.



 $Bernoulli(\varrho)$ distribution

Particles try to jump

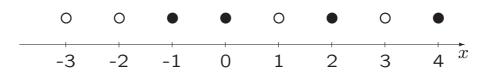
to the right with rate p, to the left with rate q = 1 - p < p.



 $Bernoulli(\varrho)$ distribution

Particles try to jump

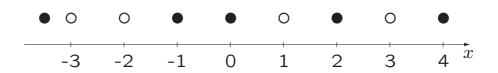
to the right with rate p, to the left with rate q = 1 - p < p.



 $Bernoulli(\varrho)$ distribution

Particles try to jump

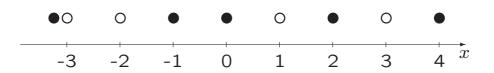
to the right with rate p, to the left with rate q = 1 - p < p.



 $Bernoulli(\varrho)$ distribution

Particles try to jump

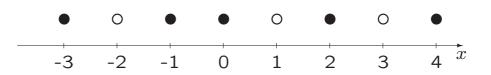
to the right with rate p, to the left with rate q = 1 - p < p.



 $Bernoulli(\varrho)$ distribution

Particles try to jump

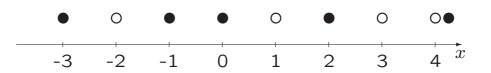
to the right with rate p, to the left with rate q = 1 - p < p.



 $Bernoulli(\varrho)$ distribution

Particles try to jump

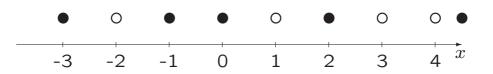
to the right with rate p, to the left with rate q = 1 - p < p.



 $Bernoulli(\varrho)$ distribution

Particles try to jump

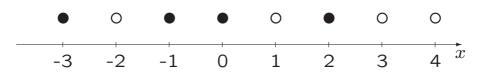
to the right with rate p, to the left with rate q = 1 - p < p.



 $Bernoulli(\varrho)$ distribution

Particles try to jump

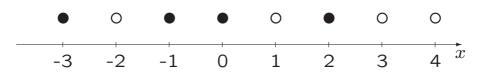
to the right with rate p, to the left with rate q = 1 - p < p.



 $Bernoulli(\varrho)$ distribution

Particles try to jump

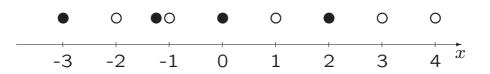
to the right with rate p, to the left with rate q = 1 - p < p.



 $Bernoulli(\varrho)$ distribution

Particles try to jump

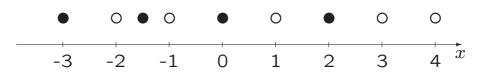
to the right with rate p, to the left with rate q = 1 - p < p.



 $Bernoulli(\varrho)$ distribution

Particles try to jump

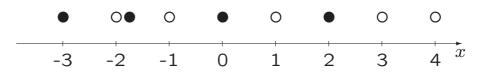
to the right with rate p, to the left with rate q = 1 - p < p.



 $Bernoulli(\varrho)$ distribution

Particles try to jump

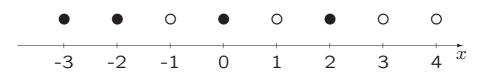
to the right with rate p, to the left with rate q = 1 - p < p.



 $Bernoulli(\varrho)$ distribution

Particles try to jump

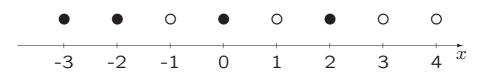
to the right with rate p, to the left with rate q = 1 - p < p.



 $Bernoulli(\varrho)$ distribution

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.



 $Bernoulli(\varrho)$ distribution

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

The jump is suppressed if the destination site is occupied by another particle. The Bernoulli(ϱ) distribution is time-stationary for any ($0 \le \varrho \le 1$). Any translation-invariant stationary distribution is a mixture of Bernoullis.

Let T and X be some large-scale time and space parameters.

Let T and X be some large-scale time and space parameters.

→ Set initially $\varrho = \varrho(T = 0, X)$ to be the density at position $x = X/\varepsilon$. (Changes on the large scale.)

Let T and X be some large-scale time and space parameters.

→ Set initially $\varrho = \varrho(T = 0, X)$ to be the density at position $x = X/\varepsilon$. (Changes on the large scale.)

 $\rightsquigarrow \varrho(T, X)$ is the density of particles after a long time $t = T/\varepsilon$ at position $x = X/\varepsilon$.

Let T and X be some large-scale time and space parameters.

→ Set initially $\varrho = \varrho(T = 0, X)$ to be the density at position $x = X/\varepsilon$. (Changes on the large scale.)

 $\rightsquigarrow \varrho(T, X)$ is the density of particles after a long time $t = T/\varepsilon$ at position $x = X/\varepsilon$. It satisfies, with a := p - q,

 $\frac{\partial}{\partial T} \varrho + \frac{\partial}{\partial X} a[\varrho(1-\varrho)] = 0 \quad \text{(inviscid Burgers)}$

Let T and X be some large-scale time and space parameters.

→ Set initially $\varrho = \varrho(T = 0, X)$ to be the density at position $x = X/\varepsilon$. (Changes on the large scale.)

 $\rightsquigarrow \varrho(T, X)$ is the density of particles after a long time $t = T/\varepsilon$ at position $x = X/\varepsilon$. It satisfies, with a := p - q,

 $\frac{\partial}{\partial T} \varrho + \frac{\partial}{\partial X} a[\varrho(1-\varrho)] = 0 \quad \text{(inviscid Burgers)}$ $\frac{\partial}{\partial T} \varrho + a[1-2\varrho] \cdot \frac{\partial}{\partial X} \varrho = 0 \quad \text{(while smooth)}$

Let T and X be some large-scale time and space parameters.

→ Set initially $\varrho = \varrho(T = 0, X)$ to be the density at position $x = X/\varepsilon$. (Changes on the large scale.)

 $\rightsquigarrow \varrho(T, X)$ is the density of particles after a long time $t = T/\varepsilon$ at position $x = X/\varepsilon$. It satisfies, with a := p - q,

 $\frac{\partial}{\partial T} \varrho + \frac{\partial}{\partial X} a[\varrho(1-\varrho)] = 0 \quad \text{(inviscid Burgers)}$ $\frac{\partial}{\partial T} \varrho + a[1-2\varrho] \cdot \frac{\partial}{\partial X} \varrho = 0 \quad \text{(while smooth)}$ $\frac{d}{dT} \varrho(T, X(T)) = 0$

Let T and X be some large-scale time and space parameters.

→ Set initially $\varrho = \varrho(T = 0, X)$ to be the density at position $x = X/\varepsilon$. (Changes on the large scale.)

 $\rightsquigarrow \varrho(T, X)$ is the density of particles after a long time $t = T/\varepsilon$ at position $x = X/\varepsilon$. It satisfies, with a := p - q,

 $\frac{\partial}{\partial T} \varrho + \frac{\partial}{\partial X} a[\varrho(1-\varrho)] = 0 \quad \text{(inviscid Burgers)}$ $\frac{\partial}{\partial T} \varrho + a[1-2\varrho] \cdot \frac{\partial}{\partial X} \varrho = 0 \quad \text{(while smooth)}$ $\frac{\partial}{\partial T} \varrho + \frac{\mathrm{d}X(T)}{\mathrm{d}T} \cdot \frac{\partial}{\partial X} \varrho = \frac{\mathrm{d}}{\mathrm{d}T} \varrho(T, X(T)) = 0$

Let T and X be some large-scale time and space parameters.

→ Set initially $\varrho = \varrho(T = 0, X)$ to be the density at position $x = X/\varepsilon$. (Changes on the large scale.)

 $\rightsquigarrow \varrho(T, X)$ is the density of particles after a long time $t = T/\varepsilon$ at position $x = X/\varepsilon$. It satisfies, with a := p - q,

 $\frac{\partial}{\partial T} \varrho + \frac{\partial}{\partial X} a[\varrho(1-\varrho)] = 0 \quad \text{(inviscid Burgers)}$ $\frac{\partial}{\partial T} \varrho + a[1-2\varrho] \cdot \frac{\partial}{\partial X} \varrho = 0 \quad \text{(while smooth)}$ $\frac{\partial}{\partial T} \varrho + \frac{dX(T)}{dT} \cdot \frac{\partial}{\partial X} \varrho = \frac{d}{dT} \varrho(T, X(T)) = 0$

Let T and X be some large-scale time and space parameters.

→ Set initially $\varrho = \varrho(T = 0, X)$ to be the density at position $x = X/\varepsilon$. (Changes on the large scale.)

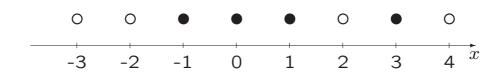
 $\rightsquigarrow \varrho(T, X)$ is the density of particles after a long time $t = T/\varepsilon$ at position $x = X/\varepsilon$. It satisfies, with a := p - q,

 $\frac{\partial}{\partial T} \varrho + \frac{\partial}{\partial X} a[\varrho(1-\varrho)] = 0 \quad \text{(inviscid Burgers)}$ $\frac{\partial}{\partial T} \varrho + a[1-2\varrho] \cdot \frac{\partial}{\partial X} \varrho = 0 \quad \text{(while smooth)}$ $\frac{\partial}{\partial T} \varrho + \frac{\mathrm{d}X(T)}{\mathrm{d}T} \cdot \frac{\partial}{\partial X} \varrho = \frac{\mathrm{d}}{\mathrm{d}T} \varrho(T, X(T)) = 0$

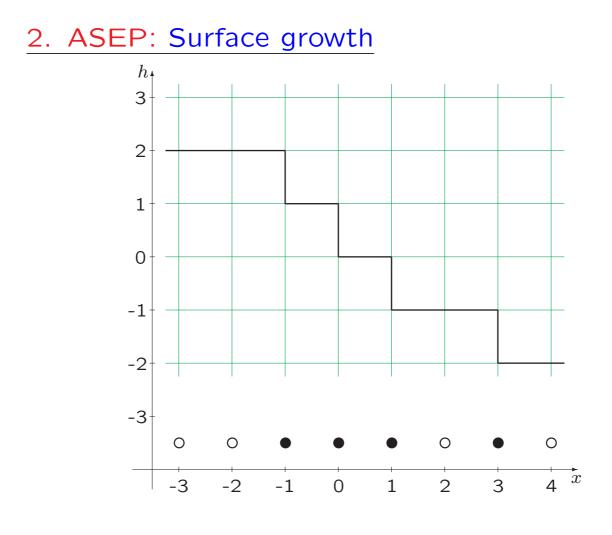
→ The characteristic speed $C(\varrho) := a[1 - 2\varrho]$. (ϱ is constant along $\dot{X}(T) = C(\varrho)$.)

33

2. ASEP: Surface growth

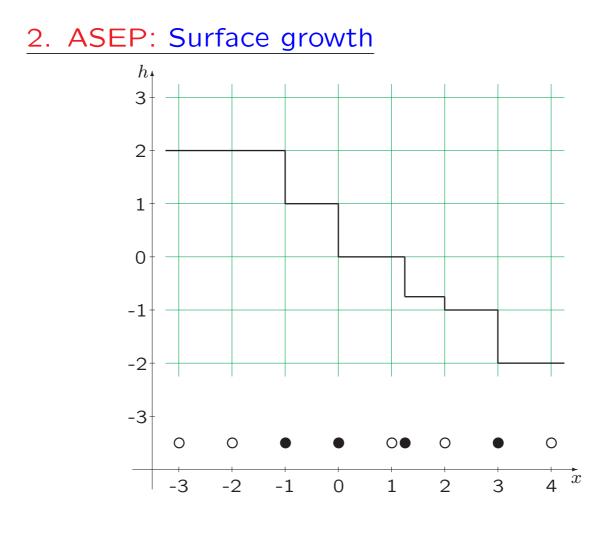


 $Bernoulli(\varrho)$ distribution



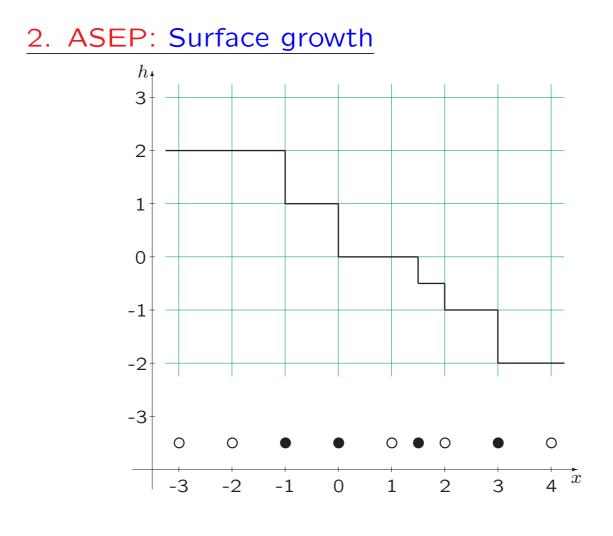
 $Bernoulli(\varrho)$ distribution

35

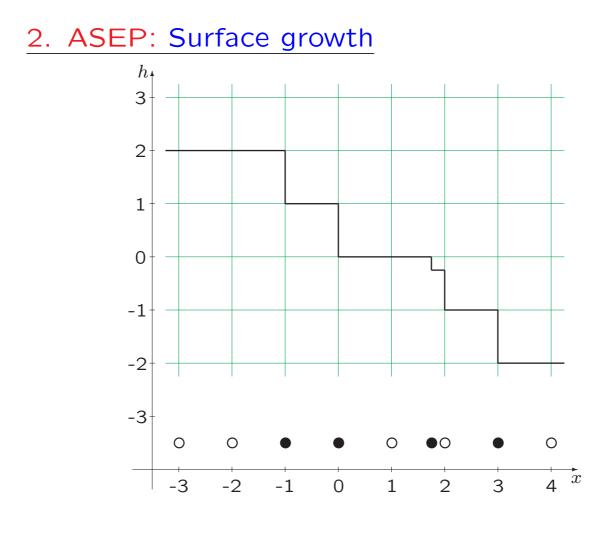


 $Bernoulli(\varrho)$ distribution

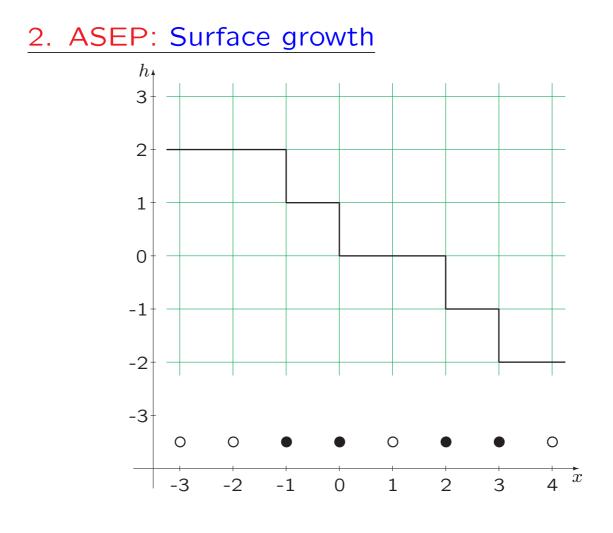
36



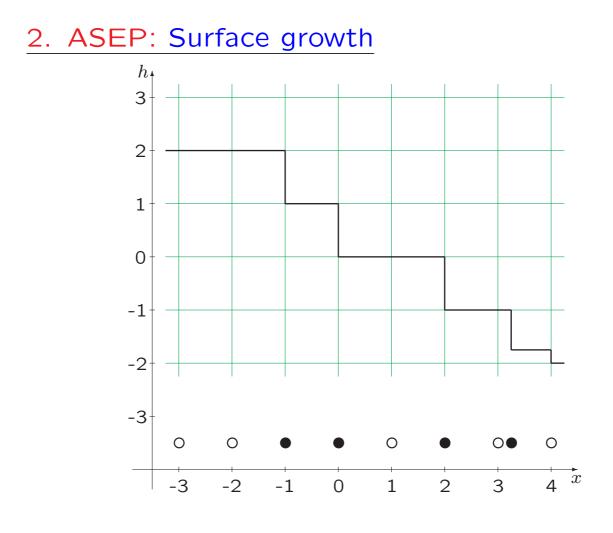
 $Bernoulli(\varrho)$ distribution



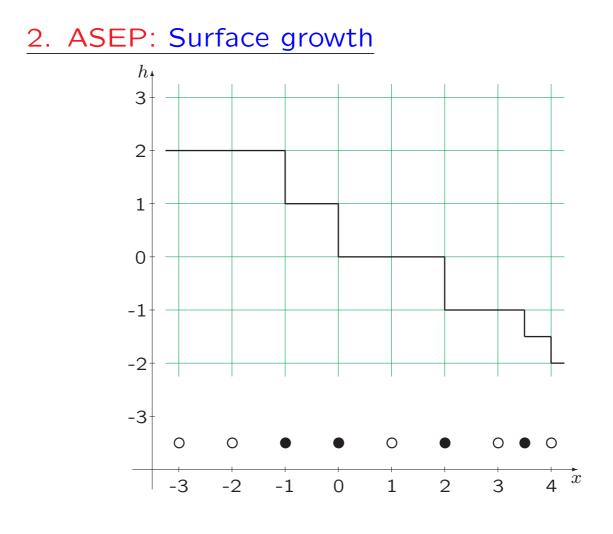
 $Bernoulli(\varrho)$ distribution



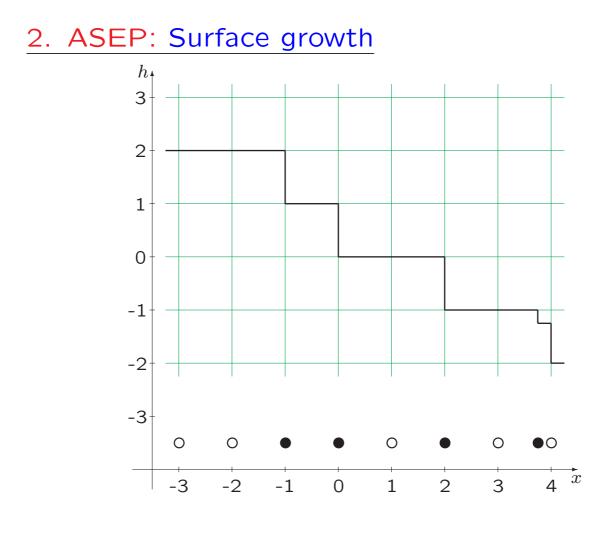
 $Bernoulli(\varrho)$ distribution



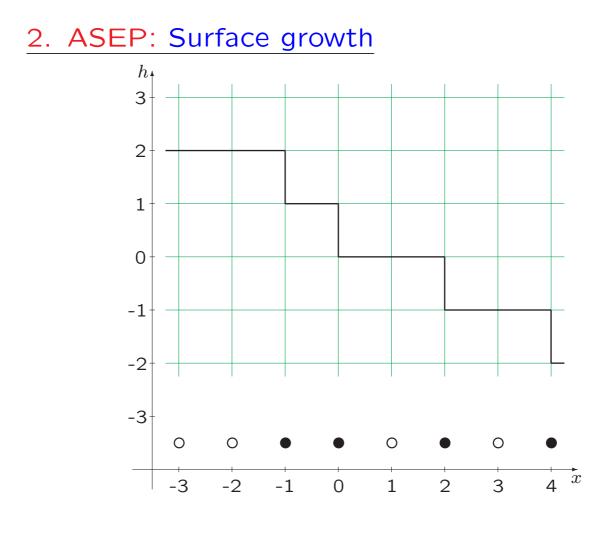
 $Bernoulli(\varrho)$ distribution



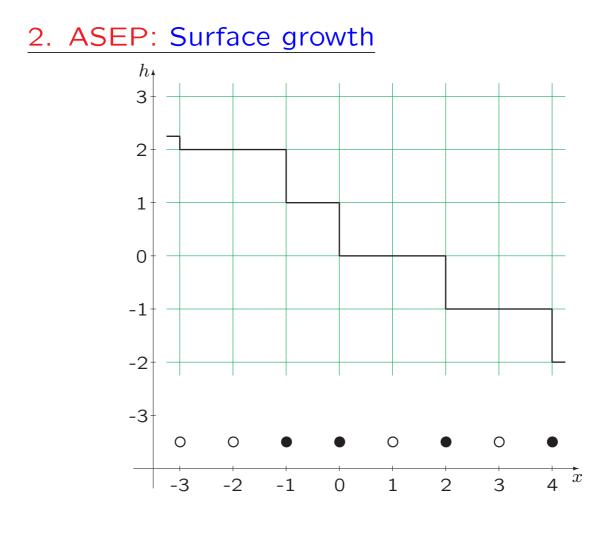
 $Bernoulli(\varrho)$ distribution

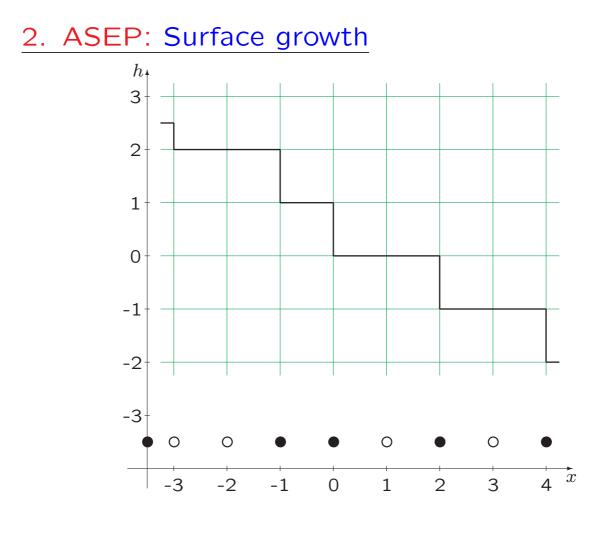


 $Bernoulli(\varrho)$ distribution

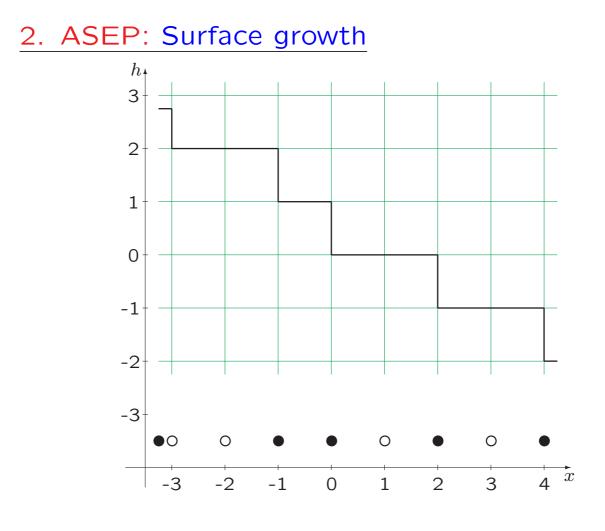


 $Bernoulli(\varrho)$ distribution

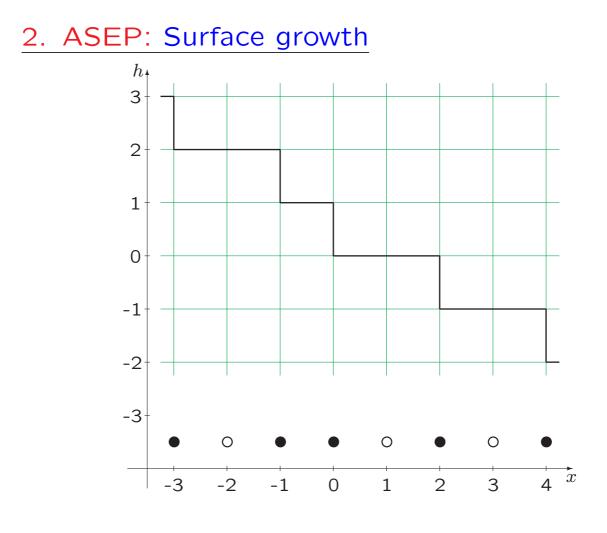




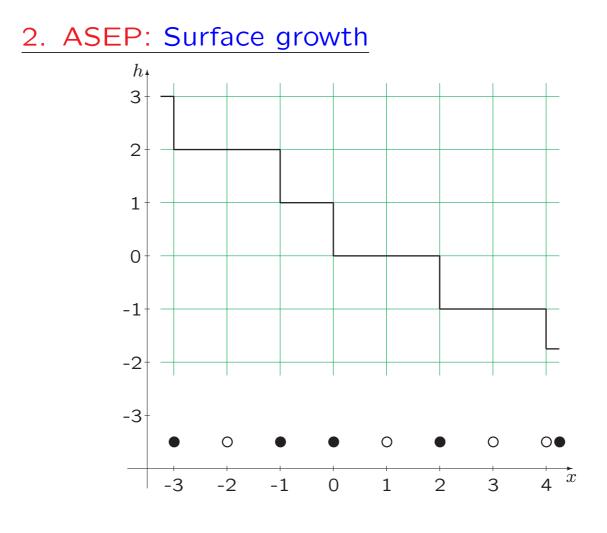
 $Bernoulli(\varrho)$ distribution

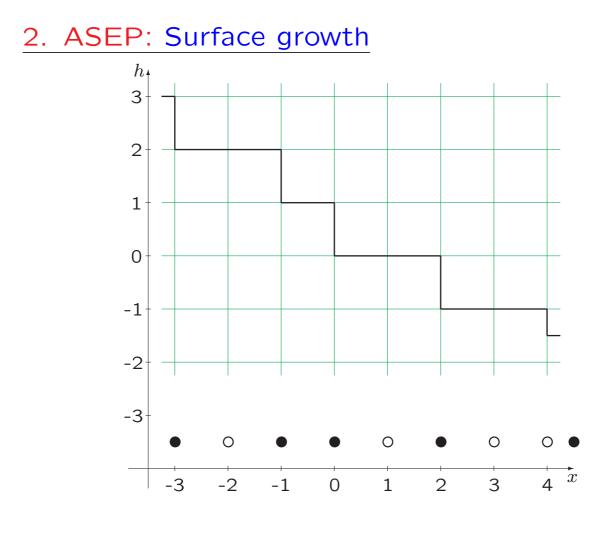


 $Bernoulli(\varrho)$ distribution

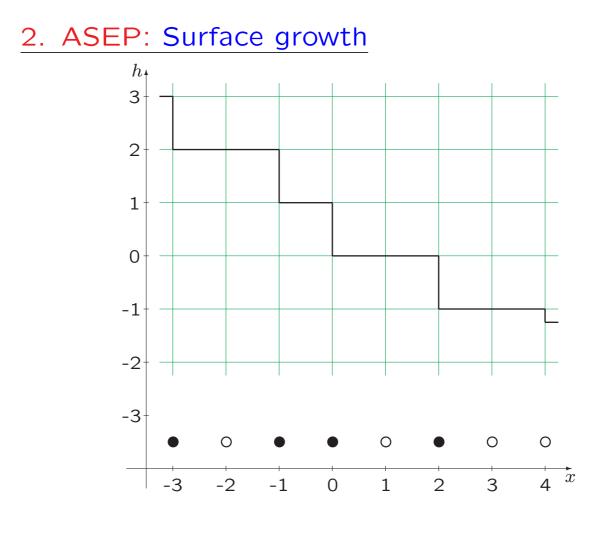


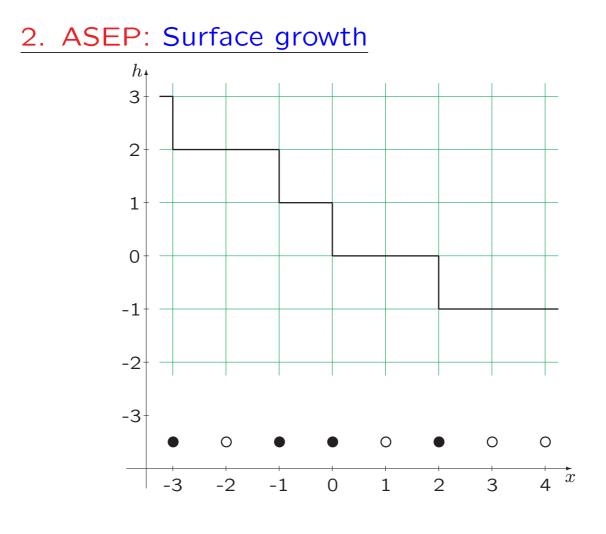
 $Bernoulli(\varrho)$ distribution



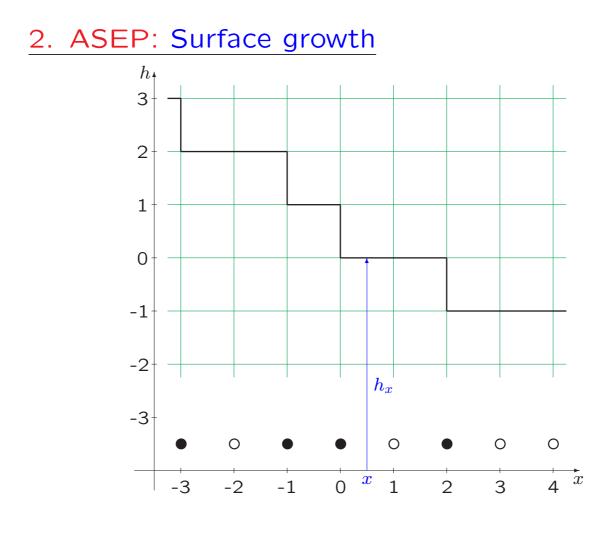


 $Bernoulli(\varrho)$ distribution

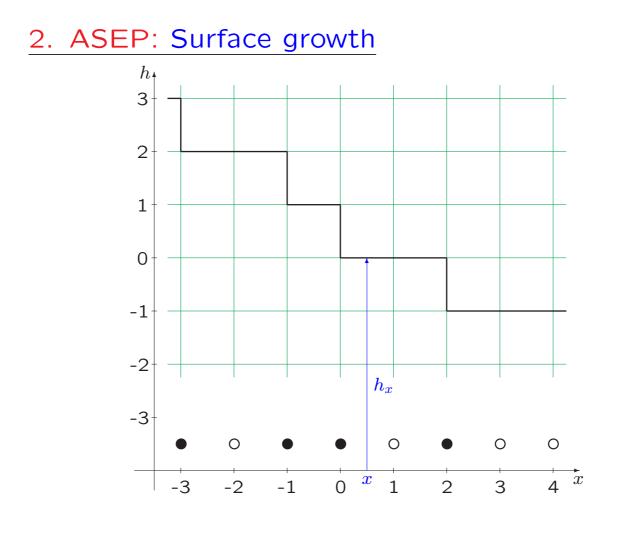


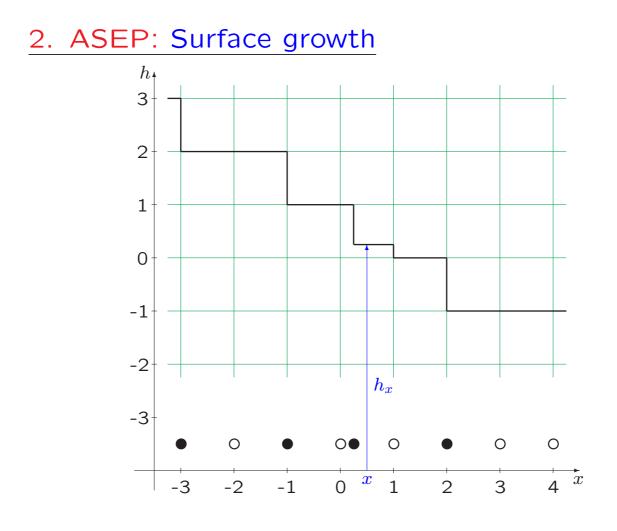


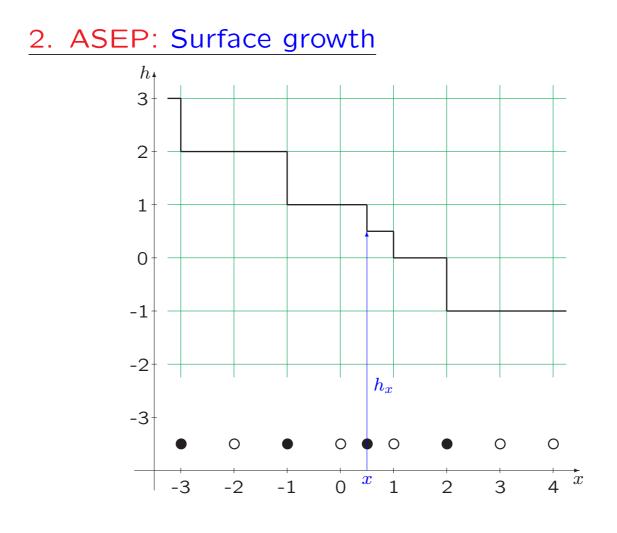
 $Bernoulli(\varrho)$ distribution

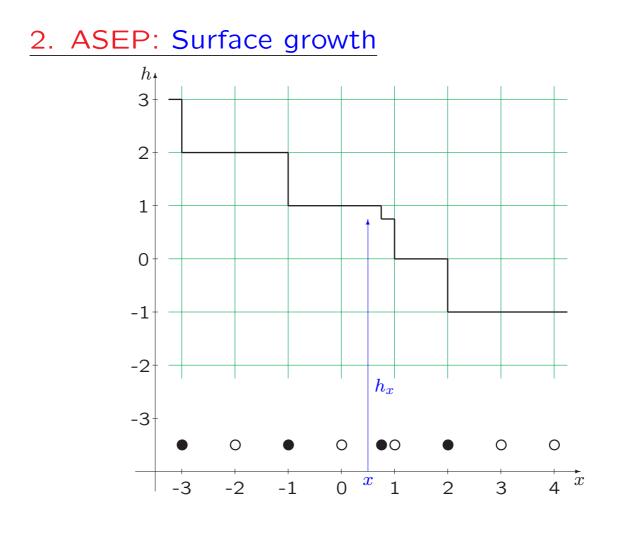


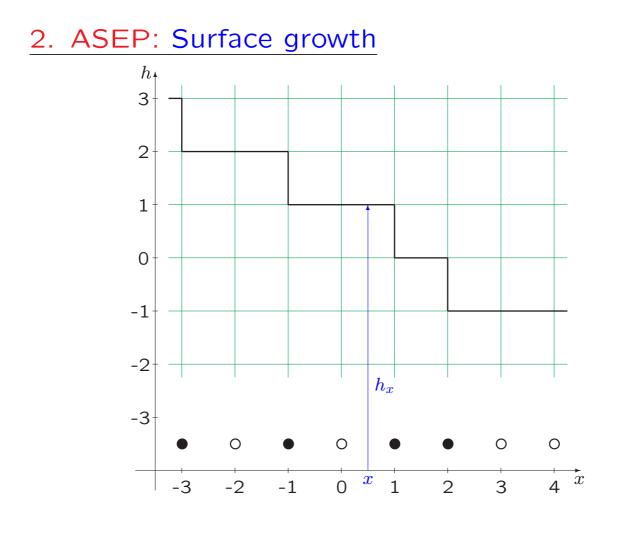
 $h_x(t)$ = height of the surface above x.

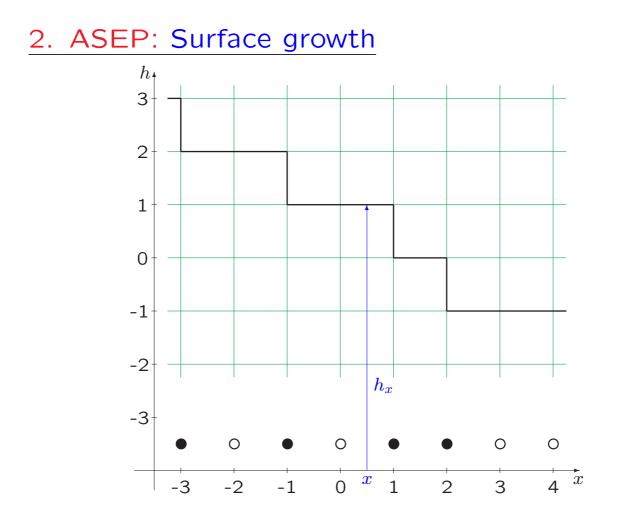








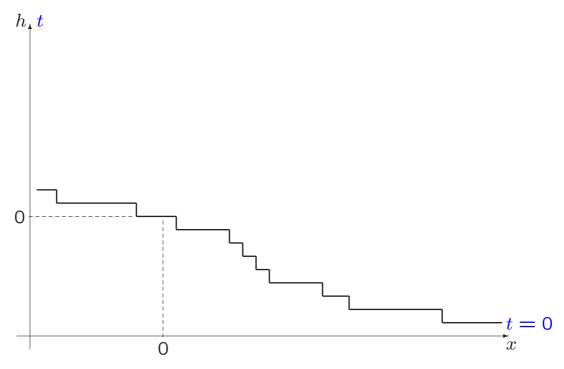


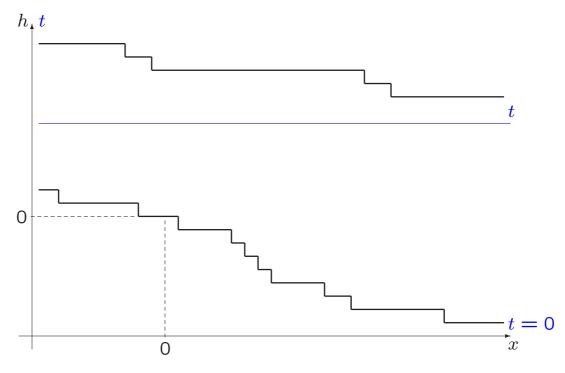


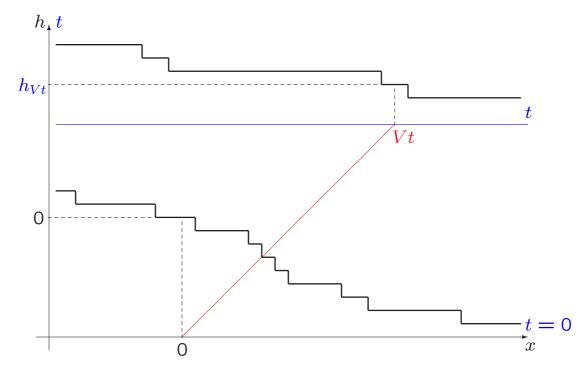
 $h_x(t)$ = height of the surface above x.

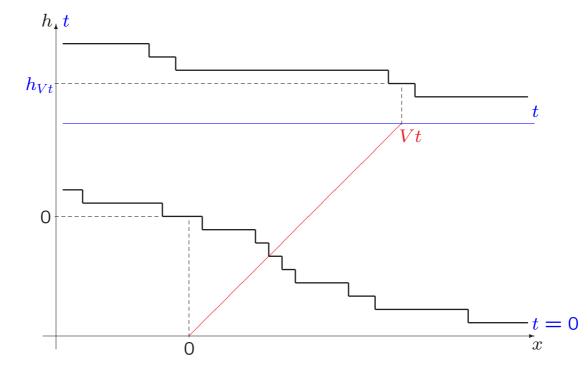
 $h_x(t) - h_x(0) =$ net number of particles passed above x.

 $h_{Vt}(t)$ = net number of particles passed through the moving window at Vt ($V \in \mathbb{R}$).



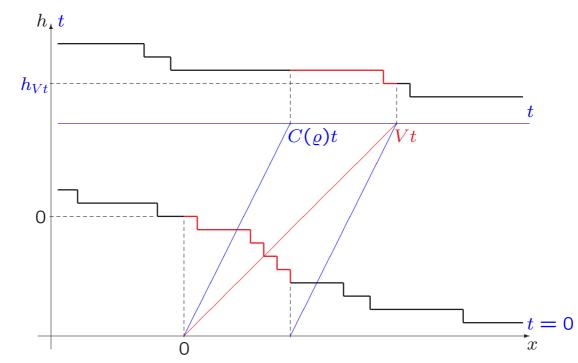






Ferrari - Fontes 1994:

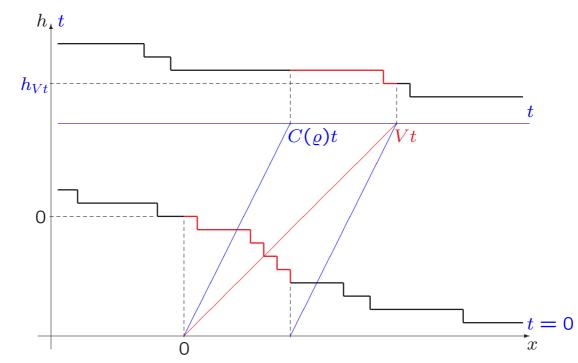
 $\lim_{t \to \infty} \frac{\operatorname{Var}(h_{Vt}(t))}{t} = \operatorname{const} \cdot |V - C(\varrho)|$



Ferrari - Fontes 1994:

 $\lim_{t \to \infty} \frac{\mathsf{Var}(h_{Vt}(t))}{t} = \operatorname{const} \cdot |V - C(\varrho)|$

 → Initial fluctuations are transported along the characteristics.

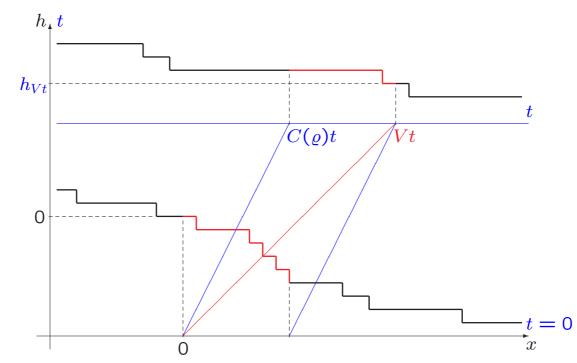


Ferrari - Fontes 1994:

 $\lim_{t \to \infty} \frac{\mathsf{Var}(h_{Vt}(t))}{t} = \operatorname{const} \cdot |V - C(\varrho)|$

→ Initial fluctuations are transported along the characteristics.

 \rightsquigarrow How about $V = C(\varrho)$?



Ferrari - Fontes 1994:

 $\lim_{t \to \infty} \frac{\operatorname{Var}(h_{Vt}(t))}{t} = \operatorname{const} \cdot |V - C(\varrho)|$

 → Initial fluctuations are transported along the characteristics.

 \rightarrow How about $V = C(\varrho)$? Conjecture:

 $\lim_{t\to\infty} \frac{\operatorname{Var}(h_{C(\varrho)t}(t))}{t^{2/3}} = [\text{sg. non trivial}].$

<u>Theorem</u>: For any $0 < \rho < 1$, and any q < p,

$$\begin{split} 0 &< \liminf_{t \to \infty} \frac{\operatorname{Var}(h_{C(\varrho)t}(t))}{t^{2/3}} \\ &\leq \limsup_{t \to \infty} \frac{\operatorname{Var}(h_{C(\varrho)t}(t))}{t^{2/3}} \leq \infty. \end{split}$$

<u>Theorem</u>: For any $0 < \rho < 1$, and any q < p,

$$\begin{split} 0 &< \liminf_{t \to \infty} \frac{\operatorname{Var}(h_{C(\varrho)t}(t))}{t^{2/3}} \\ &\leq \limsup_{t \to \infty} \frac{\operatorname{Var}(h_{C(\varrho)t}(t))}{t^{2/3}} \leq \infty. \end{split}$$

Corollary: The corresponding scaling of the diffusivity is also proved.

<u>Theorem</u>: For any $0 < \rho < 1$, and any q < p,

$$\begin{split} 0 &< \liminf_{t \to \infty} \frac{\operatorname{Var}(h_{C(\varrho)t}(t))}{t^{2/3}} \\ &\leq \limsup_{t \to \infty} \frac{\operatorname{Var}(h_{C(\varrho)t}(t))}{t^{2/3}} \leq \infty. \end{split}$$

Corollary: The corresponding scaling of the diffusivity is also proved.

Limit distributions (not yet controlling the second moment) in terms of the Tracy-Widom distribution were found by Baik, Deift and Johansson 1999, Johansson 2000, and Ferrari and Spohn 2006 for the *totally* asymmetric exclusion (*TASEP*: p = 1, q = 0).

<u>Theorem</u>: For any $0 < \rho < 1$, and any q < p,

$$\begin{split} 0 &< \liminf_{t \to \infty} \frac{\operatorname{Var}(h_{C(\varrho)t}(t))}{t^{2/3}} \\ &\leq \limsup_{t \to \infty} \frac{\operatorname{Var}(h_{C(\varrho)t}(t))}{t^{2/3}} \leq \infty. \end{split}$$

<u>Corollary:</u> The corresponding scaling of the diffusivity is also proved.

Limit distributions (not yet controlling the second moment) in terms of the Tracy-Widom distribution were found by Baik, Deift and Johansson 1999, Johansson 2000, and Ferrari and Spohn 2006 for the *totally* asymmetric exclusion (*TASEP*: p = 1, q = 0).

<u>Method was:</u> Last passage percolation, heavy combinatorics and asymptotic analysis.

<u>Theorem</u>: For any $0 < \rho < 1$, and any q < p,

$$\begin{split} 0 &< \liminf_{t \to \infty} \frac{\operatorname{Var}(h_{C(\varrho)t}(t))}{t^{2/3}} \\ &\leq \limsup_{t \to \infty} \frac{\operatorname{Var}(h_{C(\varrho)t}(t))}{t^{2/3}} \leq \infty. \end{split}$$

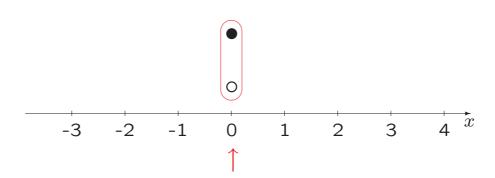
<u>Corollary:</u> The corresponding scaling of the diffusivity is also proved.

Limit distributions (not yet controlling the second moment) in terms of the Tracy-Widom distribution were found by Baik, Deift and Johansson 1999, Johansson 2000, and Ferrari and Spohn 2006 for the *totally* asymmetric exclusion (*TASEP*: p = 1, q = 0).

<u>Method was:</u> Last passage percolation, heavy combinatorics and asymptotic analysis.

→ We needed to get rid of these tools. Premises:
Cator and Groeneboom 2006 (Hammersley's process),
B., Cator and Seppäläinen 2006 (TASEP, last passage).

4. The second class particle



4. The second class particle

-1

-3 -2

Bernoulli(ϱ) distribution except for 0

↑

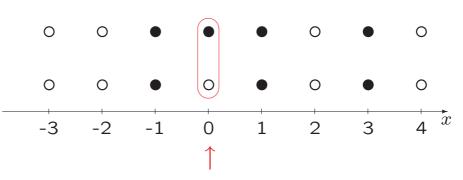
0

1

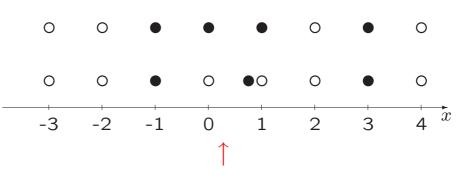
2

3

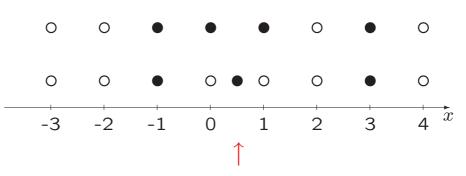
 $\overrightarrow{4}^x$



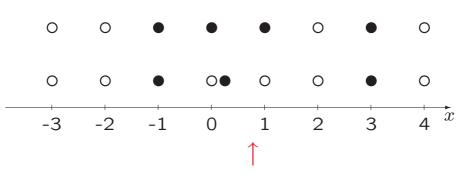
Bernoulli(ϱ) distribution except for 0



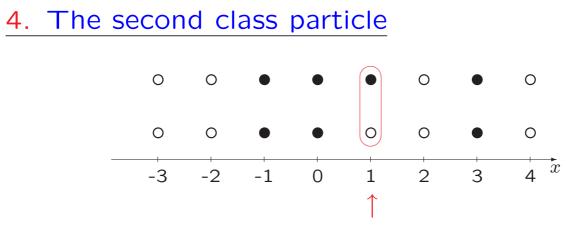
Bernoulli(ϱ) distribution except for 0



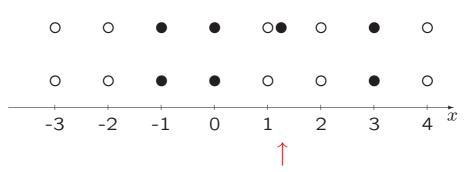
Bernoulli(ϱ) distribution except for 0



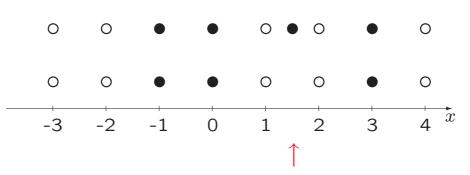
Bernoulli(ϱ) distribution except for 0



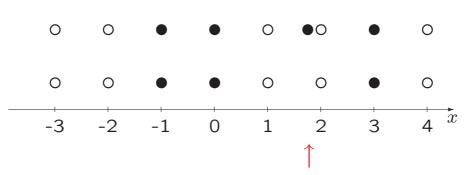
Bernoulli(ϱ) distribution except for 0



Bernoulli(ϱ) distribution except for 0



Bernoulli(ϱ) distribution except for 0



Bernoulli(ϱ) distribution except for 0

-1

-2

-3

Bernoulli(ϱ) distribution except for 0

0

1

2

↑

3

<u>Coupling</u>: A single discrepancy is always conserved

4 x

4. The second class particle 0 0 Ο Ο 0 Ο Ο Ο Ο 4 *x* -1 2 3 -2 0 1 -3 ↑

Bernoulli(ϱ) distribution except for 0

<u>Coupling</u>: A single discrepancy is always conserved = the second class particle. Its location at time t is Q(t).

4. The second class particle Ο 0 0 Ο 0 0 Ο Ο Ο 4^{x} 2 3 -2 1 -3 -1 0 ↑

Bernoulli(ϱ) distribution except for 0

<u>Coupling</u>: A single discrepancy is always conserved = the second class particle. Its location at time t is Q(t).

Theorem:

$$\mathbf{E}(Q(t)) = C(\varrho)t$$

(characteristic speed),

4. The second class particle Ο Ο Ο Ο 0 0 Ο Ο Ο 4^{x} 2 -3 -2 -1 0 1 3 ↑

Bernoulli(ϱ) distribution except for 0

<u>Coupling</u>: A single discrepancy is always conserved = the second class particle. Its location at time t is Q(t).

Theorem:

$$\mathbf{E}(Q(t)) = C(\varrho)t$$

(characteristic speed), and

 $\operatorname{Var}(h_{Vt}(t)) = \operatorname{const} \cdot \operatorname{E}|Vt - Q(t)|.$

4. The second class particle Ο 0 Ο Ο 0 0 Ο Ο Ο 4^{x} -3 -2 -1 0 1 2 3 ↑

Bernoulli(ϱ) distribution except for 0

<u>Coupling</u>: A single discrepancy is always conserved = the second class particle. Its location at time t is Q(t).

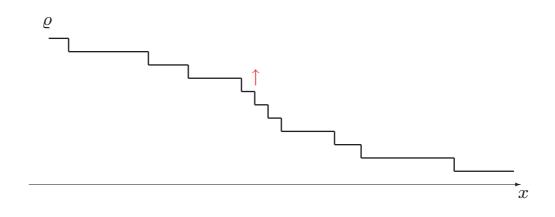
Theorem:

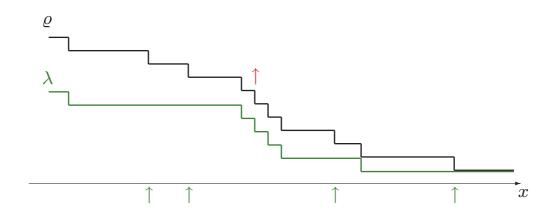
$$\mathbf{E}(Q(t)) = C(\varrho)t$$

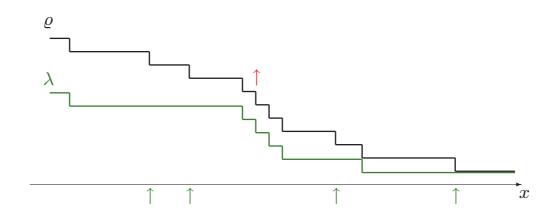
(characteristic speed), and

$$\operatorname{Var}(h_{Vt}(t)) = \operatorname{const} \cdot \operatorname{E}|Vt - Q(t)|.$$

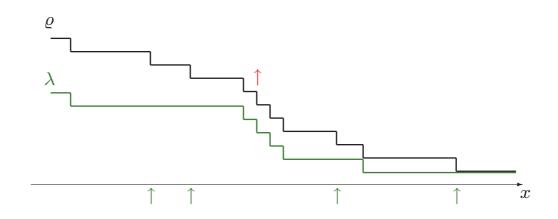
The proof is based on ideas of Bálint, he said these ideas were standard.



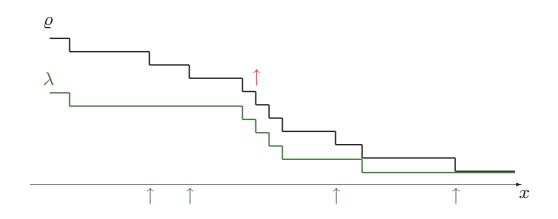




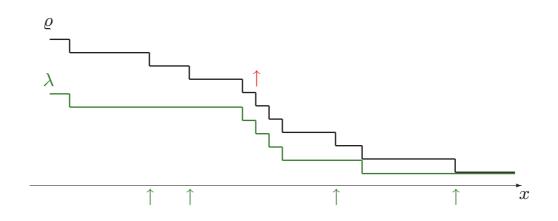
 $P{Q(t) \text{ is too large}}$



$$\begin{split} \mathbf{P} \{ \begin{matrix} Q(t) \text{ is too large} \} \\ &\leq \mathbf{P} \{ \text{too many } \uparrow \text{'s have crossed } C(\varrho)t \} \end{split}$$

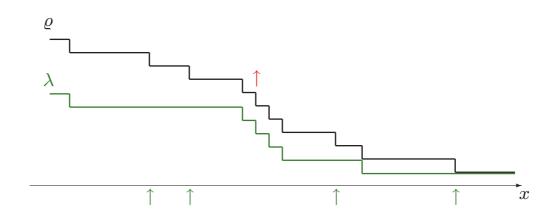


$$\begin{split} & \mathbf{P}\{Q(t) \text{ is too large}\} \\ & \leq \mathbf{P}\{\text{too many }\uparrow\text{'s have crossed } C(\varrho)t\} \\ & \leq \mathbf{P}\{h_{C(\varrho)t}(t) - h_{C(\varrho)t}(t) \text{ is too large}\}. \end{split}$$



$$\begin{split} &\mathbf{P}\{\boldsymbol{Q(t)} \text{ is too large}\}\\ &\leq \mathbf{P}\{\text{too many }\uparrow\text{'s have crossed }C(\varrho)t\}\\ &\leq \mathbf{P}\{h_{C(\varrho)t}(t)-h_{C(\varrho)t}(t) \text{ is too large}\}. \end{split}$$

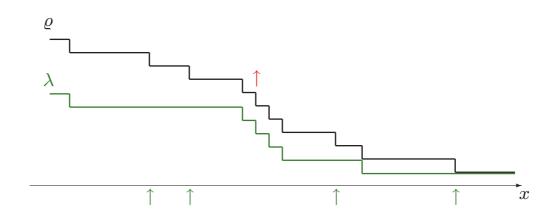
Optimize "too large" in λ ,



$$\begin{split} &\mathbf{P}\{\boldsymbol{Q(t)} \text{ is too large}\}\\ &\leq \mathbf{P}\{\text{too many }\uparrow\text{'s have crossed }C(\varrho)t\}\\ &\leq \mathbf{P}\{h_{C(\varrho)t}(t)-h_{C(\varrho)t}(t) \text{ is too large}\}. \end{split}$$

Optimize "too large" in λ , use a Chebyshev and relate $\operatorname{Var}(h_{C(\varrho)t}(t))$ to $\operatorname{Var}(h_{C(\varrho)t}(t))$.

 $P{Q(t) \text{ is too large}} \leq [\dots] \cdot Var(h_{C(\varrho)t}(t))$



$$\begin{split} &\mathbf{P}\{\boldsymbol{Q(t)} \text{ is too large}\}\\ &\leq \mathbf{P}\{\text{too many }\uparrow\text{'s have crossed }C(\varrho)t\}\\ &\leq \mathbf{P}\{h_{C(\varrho)t}(t)-h_{C(\varrho)t}(t) \text{ is too large}\}. \end{split}$$

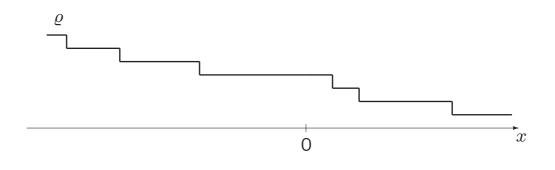
Optimize "too large" in λ , use a Chebyshev and relate $\operatorname{Var}(h_{C(\rho)t}(t))$ to $\operatorname{Var}(h_{C(\rho)t}(t))$.

$$\begin{split} \mathbf{P}\{\boldsymbol{Q(t)} \text{ is too large}\} &\leq [\dots] \cdot \mathbf{Var}(h_{C(\varrho)t}(t)) \\ &= [\dots] \cdot \mathbf{E}|C(\varrho)t - \boldsymbol{Q(t)}|. \end{split}$$

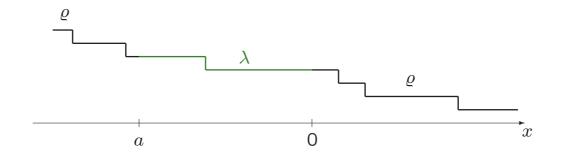
Conclude the result for $E|C(\varrho)t - Q(t)|$.

93

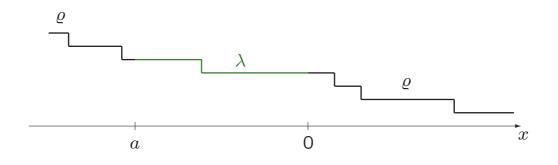
There is not much of a difference between this:



... and this:

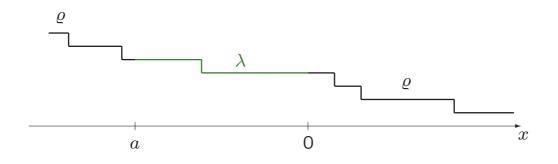


... and this:



Price to pay: A change of initial measure factor.

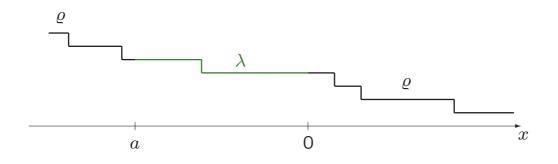
... and this:



Price to pay: A change of initial measure factor.

In return: $h_{C(\varrho)t}(t)$ behaves like $h_{C(\varrho)t}(t)$.

... and this:

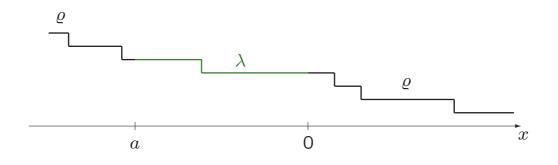


Price to pay: A change of initial measure factor.

In return: $h_{C(\varrho)t}(t)$ behaves like $h_{C(\varrho)t}(t)$.

These have different expectations.

... and this:



Price to pay: A change of initial measure factor.

In return: $h_{C(\varrho)t}(t)$ behaves like $h_{C(\varrho)t}(t)$.

These have different expectations.

 \rightsquigarrow Enough deviation to prove the lower bound if $\rho - \lambda \simeq t^{-1/3}$, $a \simeq t^{2/3}$.

Thank you.

100