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1. ASEP: Interacting particles

-
x

◦ ◦ • • • ◦ ◦•
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Bernoulli(̺) distribution

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site

is occupied by another particle.

The Bernoulli(̺) distribution is time-stationary

for any (0 ≤ ̺ ≤ 1). Any translation-invariant sta-

tionary distribution is a mixture of Bernoullis.

2



1. ASEP: Interacting particles

-
x

◦ ◦ • • • ◦ ◦•

-3 -2 -1 0 1 2 3 4

Bernoulli(̺) distribution

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site

is occupied by another particle.

The Bernoulli(̺) distribution is time-stationary

for any (0 ≤ ̺ ≤ 1). Any translation-invariant sta-

tionary distribution is a mixture of Bernoullis.

3



1. ASEP: Interacting particles

-
x

◦ ◦ • • ◦◦• ◦•

-3 -2 -1 0 1 2 3 4

Bernoulli(̺) distribution

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site

is occupied by another particle.

The Bernoulli(̺) distribution is time-stationary

for any (0 ≤ ̺ ≤ 1). Any translation-invariant sta-

tionary distribution is a mixture of Bernoullis.

4



1. ASEP: Interacting particles

-
x

◦ ◦ • • ◦◦ • ◦•

-3 -2 -1 0 1 2 3 4

Bernoulli(̺) distribution

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site

is occupied by another particle.

The Bernoulli(̺) distribution is time-stationary

for any (0 ≤ ̺ ≤ 1). Any translation-invariant sta-

tionary distribution is a mixture of Bernoullis.

5



1. ASEP: Interacting particles

-
x

◦ ◦ • • ◦◦ • ◦•

-3 -2 -1 0 1 2 3 4

Bernoulli(̺) distribution

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site

is occupied by another particle.

The Bernoulli(̺) distribution is time-stationary

for any (0 ≤ ̺ ≤ 1). Any translation-invariant sta-

tionary distribution is a mixture of Bernoullis.

6



1. ASEP: Interacting particles

-
x

◦ ◦ • • •◦ ◦•

-3 -2 -1 0 1 2 3 4

Bernoulli(̺) distribution

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site

is occupied by another particle.

The Bernoulli(̺) distribution is time-stationary

for any (0 ≤ ̺ ≤ 1). Any translation-invariant sta-

tionary distribution is a mixture of Bernoullis.

7



1. ASEP: Interacting particles

-
x

◦ ◦ • • •◦ • ◦◦

-3 -2 -1 0 1 2 3 4

Bernoulli(̺) distribution

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site

is occupied by another particle.

The Bernoulli(̺) distribution is time-stationary

for any (0 ≤ ̺ ≤ 1). Any translation-invariant sta-

tionary distribution is a mixture of Bernoullis.

8



1. ASEP: Interacting particles

-
x

◦ ◦ • • •◦ • ◦◦

-3 -2 -1 0 1 2 3 4

Bernoulli(̺) distribution

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site

is occupied by another particle.

The Bernoulli(̺) distribution is time-stationary

for any (0 ≤ ̺ ≤ 1). Any translation-invariant sta-

tionary distribution is a mixture of Bernoullis.

9



1. ASEP: Interacting particles

-
x

◦ ◦ • • •◦ •◦◦

-3 -2 -1 0 1 2 3 4

Bernoulli(̺) distribution

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site

is occupied by another particle.

The Bernoulli(̺) distribution is time-stationary

for any (0 ≤ ̺ ≤ 1). Any translation-invariant sta-

tionary distribution is a mixture of Bernoullis.

10



1. ASEP: Interacting particles

-
x

◦ ◦ • • •◦ •◦

-3 -2 -1 0 1 2 3 4

Bernoulli(̺) distribution

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site

is occupied by another particle.

The Bernoulli(̺) distribution is time-stationary

for any (0 ≤ ̺ ≤ 1). Any translation-invariant sta-

tionary distribution is a mixture of Bernoullis.

11



1. ASEP: Interacting particles

-
x

◦ ◦ • • •◦ •◦

-3 -2 -1 0 1 2 3 4

Bernoulli(̺) distribution

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site

is occupied by another particle.

The Bernoulli(̺) distribution is time-stationary

for any (0 ≤ ̺ ≤ 1). Any translation-invariant sta-

tionary distribution is a mixture of Bernoullis.

12



1. ASEP: Interacting particles

-
x

• ◦ ◦ • • •◦ •◦

-3 -2 -1 0 1 2 3 4

Bernoulli(̺) distribution

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site

is occupied by another particle.

The Bernoulli(̺) distribution is time-stationary

for any (0 ≤ ̺ ≤ 1). Any translation-invariant sta-

tionary distribution is a mixture of Bernoullis.

13



1. ASEP: Interacting particles

-
x

•◦ ◦ • • •◦ •◦

-3 -2 -1 0 1 2 3 4

Bernoulli(̺) distribution

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site

is occupied by another particle.

The Bernoulli(̺) distribution is time-stationary

for any (0 ≤ ̺ ≤ 1). Any translation-invariant sta-

tionary distribution is a mixture of Bernoullis.

14



1. ASEP: Interacting particles

-
x

• ◦ • • •◦ •◦

-3 -2 -1 0 1 2 3 4

Bernoulli(̺) distribution

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site

is occupied by another particle.

The Bernoulli(̺) distribution is time-stationary

for any (0 ≤ ̺ ≤ 1). Any translation-invariant sta-

tionary distribution is a mixture of Bernoullis.

15



1. ASEP: Interacting particles

-
x

• ◦ • • •◦ ◦•◦

-3 -2 -1 0 1 2 3 4

Bernoulli(̺) distribution

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site

is occupied by another particle.

The Bernoulli(̺) distribution is time-stationary

for any (0 ≤ ̺ ≤ 1). Any translation-invariant sta-

tionary distribution is a mixture of Bernoullis.

16



1. ASEP: Interacting particles

-
x

• ◦ • • •◦ •◦ ◦

-3 -2 -1 0 1 2 3 4

Bernoulli(̺) distribution

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site

is occupied by another particle.

The Bernoulli(̺) distribution is time-stationary

for any (0 ≤ ̺ ≤ 1). Any translation-invariant sta-

tionary distribution is a mixture of Bernoullis.

17



1. ASEP: Interacting particles

-
x

• ◦ • • •◦ ◦◦

-3 -2 -1 0 1 2 3 4

Bernoulli(̺) distribution

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site

is occupied by another particle.

The Bernoulli(̺) distribution is time-stationary

for any (0 ≤ ̺ ≤ 1). Any translation-invariant sta-

tionary distribution is a mixture of Bernoullis.

18



1. ASEP: Interacting particles

-
x

• ◦ • • •◦ ◦◦

-3 -2 -1 0 1 2 3 4

Bernoulli(̺) distribution

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site

is occupied by another particle.

The Bernoulli(̺) distribution is time-stationary

for any (0 ≤ ̺ ≤ 1). Any translation-invariant sta-

tionary distribution is a mixture of Bernoullis.

19



1. ASEP: Interacting particles

-
x

• ◦ • • •◦ ◦ ◦◦

-3 -2 -1 0 1 2 3 4

Bernoulli(̺) distribution

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site

is occupied by another particle.

The Bernoulli(̺) distribution is time-stationary

for any (0 ≤ ̺ ≤ 1). Any translation-invariant sta-

tionary distribution is a mixture of Bernoullis.

20



1. ASEP: Interacting particles

-
x

• ◦ • • •◦ ◦ ◦◦

-3 -2 -1 0 1 2 3 4

Bernoulli(̺) distribution

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site

is occupied by another particle.

The Bernoulli(̺) distribution is time-stationary

for any (0 ≤ ̺ ≤ 1). Any translation-invariant sta-

tionary distribution is a mixture of Bernoullis.

21



1. ASEP: Interacting particles

-
x

• ◦• • •◦ ◦ ◦◦

-3 -2 -1 0 1 2 3 4

Bernoulli(̺) distribution

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site

is occupied by another particle.

The Bernoulli(̺) distribution is time-stationary

for any (0 ≤ ̺ ≤ 1). Any translation-invariant sta-

tionary distribution is a mixture of Bernoullis.

22



1. ASEP: Interacting particles

-
x

• • • •◦ ◦ ◦◦

-3 -2 -1 0 1 2 3 4

Bernoulli(̺) distribution

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site

is occupied by another particle.

The Bernoulli(̺) distribution is time-stationary

for any (0 ≤ ̺ ≤ 1). Any translation-invariant sta-

tionary distribution is a mixture of Bernoullis.

23



1. ASEP: Interacting particles

-
x

• • • •◦ ◦ ◦◦

-3 -2 -1 0 1 2 3 4

Bernoulli(̺) distribution

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site

is occupied by another particle.

The Bernoulli(̺) distribution is time-stationary

for any (0 ≤ ̺ ≤ 1). Any translation-invariant sta-

tionary distribution is a mixture of Bernoullis.

24



Hydrodynamics (briefly)

Let T and X be some large-scale time and

space parameters.

 Set initially ̺ = ̺(T = 0, X) to be the den-

sity at position x = X/ε. (Changes on the large

scale.)

 ̺(T , X) is the density of particles after a

long time t = T/ε at position x = X/ε. It

satisfies, with a := p − q,

∂

∂T
̺ +

∂

∂X
a[̺(1 − ̺)] = 0 (inviscid Burgers)

∂

∂T
̺ + a[1 − 2̺] ·

∂

∂X
̺ = 0 (while smooth)

∂

∂T
̺ +

dX(T )

dT
·

∂

∂X
̺ =

d

dT
̺(T , X(T )) = 0

 The characteristic speed C(̺) := a[1 − 2̺].

(̺ is constant along Ẋ(t) = C(̺).)
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Hydrodynamics (briefly)
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2. ASEP: Surface growth

-
x

◦ ◦ • • • ◦ ◦•
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Bernoulli(̺) distribution

hx(t) = height of the surface above x.

hx(t)−hx(0) = net number of particles passed

above x.

hV t(t) = net number of particles passed thro-

ugh the moving window at V t (V ∈ R).
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3. Growth fluctuations

-

6

x
t = 0

h t

0

0

Ferrari - Fontes 1994:

lim
t→∞

Var(hV t(t))

t
= const · |V − C(̺)|

 Initial fluctuations are transported along the

characteristics.

 How about V = C(̺)?
Conjecture:

lim
t→∞

Var(hC(̺)t(t))

t2/3
= [sg. non trivial].
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3. Growth fluctuations

Theorem: For any 0 < ̺ < 1, and any q < p,

0 < lim inf
t→∞

Var(hC(̺)t(t))

t2/3

≤ lim sup
t→∞

Var(hC(̺)t(t))

t2/3
≤ ∞.

Corollary: The corresponding scaling of the dif-

fusivity is also proved.

Limit distributions (not yet controlling the second mo-

ment) in terms of the Tracy-Widom distribution were

found by Baik, Deift and Johansson 1999, Johansson

2000, and Ferrari and Spohn 2006 for the totally asym-

metric exclusion (TASEP: p = 1, q = 0).

Method was: Last passage percolation, heavy combina-

torics and asymptotic analysis.

 We needed to get rid of these tools. Premises:

Cator and Groeneboom 2006 (Hammersley’s process),

B., Cator and Seppäläinen 2006 (TASEP, last passage).
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B., Cator and Seppäläinen 2006 (TASEP, last passage).

67



3. Growth fluctuations

Theorem: For any 0 < ̺ < 1, and any q < p,

0 < lim inf
t→∞

Var(hC(̺)t(t))

t2/3

≤ lim sup
t→∞

Var(hC(̺)t(t))

t2/3
≤ ∞.

Corollary: The corresponding scaling of the dif-

fusivity is also proved.

Limit distributions (not yet controlling the second mo-

ment) in terms of the Tracy-Widom distribution were

found by Baik, Deift and Johansson 1999, Johansson

2000, and Ferrari and Spohn 2006 for the totally asym-

metric exclusion (TASEP: p = 1, q = 0).

Method was: Last passage percolation, heavy

combinatorics and asymptotic analysis.

 We needed to get rid of these tools. Premises:

Cator and Groeneboom 2006 (Hammersley’s process),
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4. The second class particle

-
x

◦

•
�

�

�



↑
-3 -2 -1 0 1 2 3 4

Bernoulli(̺) distribution

Coupling: A single discrepancy is always con-

served = the second class particle. Its location

at time t is Q(t).

Theorem:

E(Q(t)) = C(̺)t

(characteristic speed), and

Var(hV t(t)) = const · E|V t − Q(t)|.

The proof is based on ideas of Bálint, he said these ideas

were standard.

71



4. The second class particle

-
x

◦ ◦ • •◦ ◦ ◦•

◦ ◦ •• • ◦ ◦•
�

�

�



↑
-3 -2 -1 0 1 2 3 4

Bernoulli(̺) distribution except for 0

Coupling: A single discrepancy is always con-

served = the second class particle. Its location

at time t is Q(t).

Theorem:

E(Q(t)) = C(̺)t

(characteristic speed), and

Var(hV t(t)) = const · E|V t − Q(t)|.

The proof is based on ideas of Bálint, he said these ideas

were standard.

72



4. The second class particle

-
x

◦ ◦ • •◦ ◦ ◦•

◦ ◦ •• • ◦ ◦•
�

�

�



↑
-3 -2 -1 0 1 2 3 4

Bernoulli(̺) distribution except for 0

Coupling: A single discrepancy is always con-

served = the second class particle. Its location

at time t is Q(t).

Theorem:

E(Q(t)) = C(̺)t

(characteristic speed), and

Var(hV t(t)) = const · E|V t − Q(t)|.

The proof is based on ideas of Bálint, he said these ideas

were standard.

73



4. The second class particle

-
x

◦ ◦ ◦• •◦ ◦ ◦•

◦ ◦ •• • ◦ ◦•

↑
-3 -2 -1 0 1 2 3 4

Bernoulli(̺) distribution except for 0

Coupling: A single discrepancy is always con-

served = the second class particle. Its location

at time t is Q(t).

Theorem:

E(Q(t)) = C(̺)t

(characteristic speed), and

Var(hV t(t)) = const · E|V t − Q(t)|.

The proof is based on ideas of Bálint, he said these ideas

were standard.

74



4. The second class particle

-
x

◦ ◦ ◦• •◦ ◦ ◦•

◦ ◦ •• • ◦ ◦•

↑
-3 -2 -1 0 1 2 3 4

Bernoulli(̺) distribution except for 0

Coupling: A single discrepancy is always con-

served = the second class particle. Its location

at time t is Q(t).

Theorem:

E(Q(t)) = C(̺)t

(characteristic speed), and

Var(hV t(t)) = const · E|V t − Q(t)|.

The proof is based on ideas of Bálint, he said these ideas

were standard.

75



4. The second class particle

-
x

◦ ◦ ◦• •◦ ◦ ◦•

◦ ◦ •• • ◦ ◦•

↑
-3 -2 -1 0 1 2 3 4

Bernoulli(̺) distribution except for 0

Coupling: A single discrepancy is always con-

served = the second class particle. Its location

at time t is Q(t).

Theorem:

E(Q(t)) = C(̺)t

(characteristic speed), and

Var(hV t(t)) = const · E|V t − Q(t)|.

The proof is based on ideas of Bálint, he said these ideas

were standard.

76



4. The second class particle

-
x

◦ ◦ ◦• • ◦ ◦•

◦ ◦ •• • ◦ ◦•
�

�

�



↑
-3 -2 -1 0 1 2 3 4

Bernoulli(̺) distribution except for 0

Coupling: A single discrepancy is always con-

served = the second class particle. Its location

at time t is Q(t).

Theorem:

E(Q(t)) = C(̺)t

(characteristic speed), and

Var(hV t(t)) = const · E|V t − Q(t)|.

The proof is based on ideas of Bálint, he said these ideas

were standard.

77



4. The second class particle

-
x

◦ ◦ ◦• • ◦ ◦•

◦ ◦ • ◦• • ◦ ◦•

↑
-3 -2 -1 0 1 2 3 4

Bernoulli(̺) distribution except for 0

Coupling: A single discrepancy is always con-

served = the second class particle. Its location

at time t is Q(t).

Theorem:

E(Q(t)) = C(̺)t

(characteristic speed), and

Var(hV t(t)) = const · E|V t − Q(t)|.

The proof is based on ideas of Bálint, he said these ideas

were standard.

78



4. The second class particle

-
x

◦ ◦ ◦• • ◦ ◦•

◦ ◦ • ◦• • ◦ ◦•

↑
-3 -2 -1 0 1 2 3 4

Bernoulli(̺) distribution except for 0

Coupling: A single discrepancy is always con-

served = the second class particle. Its location

at time t is Q(t).

Theorem:

E(Q(t)) = C(̺)t

(characteristic speed), and

Var(hV t(t)) = const · E|V t − Q(t)|.

The proof is based on ideas of Bálint, he said these ideas

were standard.

79



4. The second class particle

-
x

◦ ◦ ◦• • ◦ ◦•

◦ ◦ • ◦• •◦ ◦•

↑
-3 -2 -1 0 1 2 3 4

Bernoulli(̺) distribution except for 0

Coupling: A single discrepancy is always con-

served = the second class particle. Its location

at time t is Q(t).

Theorem:

E(Q(t)) = C(̺)t

(characteristic speed), and

Var(hV t(t)) = const · E|V t − Q(t)|.

The proof is based on ideas of Bálint, he said these ideas

were standard.

80



4. The second class particle

-
x

◦ ◦ ◦• • ◦ ◦•

◦ ◦ • ◦• •◦ ◦•
�

�

�



↑
-3 -2 -1 0 1 2 3 4

Bernoulli(̺) distribution except for 0

Coupling: A single discrepancy is always con-

served = the second class particle. Its location

at time t is Q(t).

Theorem:

E(Q(t)) = C(̺)t

(characteristic speed), and

Var(hV t(t)) = const · E|V t − Q(t)|.

The proof is based on ideas of Bálint, he said these ideas

were standard.

81



4. The second class particle

-
x

◦ ◦ ◦• • ◦ ◦•

◦ ◦ • ◦• •◦ ◦•
�

�

�



↑
-3 -2 -1 0 1 2 3 4

Bernoulli(̺) distribution except for 0

Coupling: A single discrepancy is always con-

served = the second class particle. Its location

at time t is Q(t).

Theorem:

E(Q(t)) = C(̺)t

(characteristic speed), and

Var(hV t(t)) = const · E|V t − Q(t)|.

The proof is based on ideas of Bálint, he said these ideas

were standard.

82



4. The second class particle

-
x

◦ ◦ ◦• • ◦ ◦•

◦ ◦ • ◦• •◦ ◦•
�

�

�



↑
-3 -2 -1 0 1 2 3 4

Bernoulli(̺) distribution except for 0

Coupling: A single discrepancy is always con-

served = the second class particle. Its location

at time t is Q(t).

Theorem:

E(Q(t)) = C(̺)t

(characteristic speed), and

Var(hV t(t)) = const · E|V t − Q(t)|.

The proof is based on ideas of Bálint, he said these ideas

were standard.

83



4. The second class particle

-
x

◦ ◦ ◦• • ◦ ◦•

◦ ◦ • ◦• •◦ ◦•
�

�

�



↑
-3 -2 -1 0 1 2 3 4

Bernoulli(̺) distribution except for 0

Coupling: A single discrepancy is always con-

served = the second class particle. Its location

at time t is Q(t).

Theorem:

E(Q(t)) = C(̺)t

(characteristic speed), and

Var(hV t(t)) = const · E|V t − Q(t)|.

The proof is based on ideas of Bálint, he said these ideas

were standard.

84



4. The second class particle

-
x

◦ ◦ ◦• • ◦ ◦•

◦ ◦ • ◦• •◦ ◦•
�

�

�



↑
-3 -2 -1 0 1 2 3 4

Bernoulli(̺) distribution except for 0

Coupling: A single discrepancy is always con-

served = the second class particle. Its location

at time t is Q(t).

Theorem:

E(Q(t)) = C(̺)t

(characteristic speed), and

Var(hV t(t)) = const · E|V t − Q(t)|.

The proof is based on ideas of Bálint, he said these ideas

were standard.
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5. The upper bound

-
x

̺

↑

P{Q(t) is too large}

≤ P{too many ↑’s have crossed C(̺)t}

≤ P{hC(̺)t(t) − hC(̺)t(t) is too large}.

Optimize “too large” in λ, use a Chebyshev

and relate Var(hC(̺)t(t)) to Var(hC(̺)t(t)).

P{Q(t) is too large} ≤ [. . . ] ·Var(hC(̺)t(t))

= [. . . ] · E|C(̺)t − Q(t)|.

Conclude the result for E|C(̺)t − Q(t)|.
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6. The lower bound

There is not much of a difference between this:

... and this:

-
x

0

̺

Price to pay: A change of initial measure fac-

tor.

In return: hC(̺)t(t) behaves like hC(̺)t(t).

These have different expectations.

 Enough deviation to prove the lower bound

if ̺ − λ ≃ t−1/3, a ≃ t2/3.
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Thank you.
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