$t^{1 / 3}$-order fluctuations
 in the simple exclusion process

Márton Balázs

Joint work with
Eric Cator
(Delft University of Technology)
and
Timo Seppäläinen

Madison, March 9

1. The totally asymmetric simple exclusion
2. The last passage model
3. Results
4. Last passage equilibrium
5. Upper bound
6. The competition interface
7. Time-reversal and the lower bound
8. Further directions
9. The totally asymmetric simple exclusion

1. The totally asymmetric simple exclusion

\circ	\bullet	\bullet	0	\bullet	0	0	0
-3	-2	-1	0	1	2	3	4

Bernoulli(ϱ) distribution

1. The totally asymmetric simple exclusion
2. The totally asymmetric simple exclusion
3. The totally asymmetric simple exclusion
4. The totally asymmetric simple exclusion

\circ		0	0	\bullet		0
-3	-2	-1	0	1	2	3

1. The totally asymmetric simple exclusion
2. The totally asymmetric simple exclusion
3. The totally asymmetric simple exclusion
4. The totally asymmetric simple exclusion

\circ		0	\bullet	0	\bullet	0	0
-3	-2	-1	0	1	2	3	4

1. The totally asymmetric simple exclusion

\circ	\circ	\circ	\bullet	\circ	\bullet	0	\circ
-3	-2	-1	0	1	2	3	4

1. The totally asymmetric simple exclusion
2. The totally asymmetric simple exclusion
3. The totally asymmetric simple exclusion

\circ		0	0	\bullet	\bullet	0	\circ
-3	-2	-1	0	1	2	3	4

1. The totally asymmetric simple exclusion

\circ		0	0	\bullet	\bullet	0	\circ
-3	-2	-1	0	1	2	3	4

1. The totally asymmetric simple exclusion

\circ		0	0	\bullet	\bullet		
-3	-2	-1	0	1	2	3	4

1. The totally asymmetric simple exclusion

\circ	0	\circ	0	\bullet	\bullet	\bigcirc	0
-3	-2	-1	0	1	2	3	4

1. The totally asymmetric simple exclusion
2. The totally asymmetric simple exclusion
3. The totally asymmetric simple exclusion

\circ	0	0	\bullet	\bullet	0		
-3	-2	-1	0	1	2	3	4

1. The totally asymmetric simple exclusion
2. The totally asymmetric simple exclusion

\circ	0	0	0	\bullet	\bullet	0	\circ
-3	-2	-1	0	1	2	3	4

1. The totally asymmetric simple exclusion

\circ	0	0	\bullet	\bullet	\circ	\circ	
-3	-2	-1	0	1	2	3	4

1. The totally asymmetric simple exclusion

\circ		0	0	\bullet		\bullet	0
-3	-2	-1	0	1	2	3	4

1. The totally asymmetric simple exclusion

\circ		\circ	0	\bullet	\circ	\bullet	\circ
-3	-2	-1	0	1	2	3	4

1. The totally asymmetric simple exclusion

\circ		0	0	\bullet	0	\bullet	0
-3	-2	-1	0	1	2	3	4

1. The totally asymmetric simple exclusion

\circ	0	0	\bullet	0	\bullet	0	
-3	-2	-1	0	1	2	3	4

1. The totally asymmetric simple exclusion

\circ	0	0	\bullet	0	\bullet		
-3	-2	-1	0	1	2	3	4

1. The totally asymmetric simple exclusion

\circ	0	0	\bullet	0	0	\bullet	
-3	-2	-1	0	1	2	3	4

1. The totally asymmetric simple exclusion

\circ	0	0	\bullet	0	0	\bullet	
-3	-2	-1	0	1	2	3	4

1. The totally asymmetric simple exclusion

\circ	0	0	\bullet	0	0	\bullet	
-3	-2	-1	0	1	2	3	4

1. The totally asymmetric simple exclusion

\bullet	\bullet	0	0	\bullet	0	0	\bullet
-3	-2	-1	0	1	2	3	4^{x}

1. The totally asymmetric simple exclusion
2. The totally asymmetric simple exclusion
3. The totally asymmetric simple exclusion
4. The totally asymmetric simple exclusion

	\bullet	0	\bullet	0	0	\bullet
-3	-2	-1	0	1	2	3

1. The totally asymmetric simple exclusion
2. The totally asymmetric simple exclusion

\bullet	0	\bullet	0	\bullet	0	0	\bullet
-3	-2	-1	0	1	2	3	4

1. The totally asymmetric simple exclusion

\circ	0	\bullet	0	\bullet	0	0
-3	-2	-1	0	1	2	3

1. The totally asymmetric simple exclusion
2. The totally asymmetric simple exclusion

\circ	\bullet	0	\bullet	0	0	\bullet	
-3	-2	-1	0	1	2	3	4

1. The totally asymmetric simple exclusion

0	\bullet	\bullet	0	\bullet	0	0	\bullet
-3	-2	-1	0	1	2	3	4

1. The totally asymmetric simple exclusion

\circ	\bullet	\bullet	0	\bullet	0	0	\bullet
-3	-2	-1	0	1	2	3	4

1. The totally asymmetric simple exclusion

0	\bullet		\bullet	\bullet	0	0	\bullet
-3	-2	-1	0	1	2	3	4

1. The totally asymmetric simple exclusion

\circ	\bullet	0	\bullet	\bullet	0	0	\bullet
-3	-2	-1	0	1	2	3	4

1. The totally asymmetric simple exclusion

0	\bullet	0	\bullet	\bullet	0	0	\bullet
-3	-2	-1	0	1	2	3	4

1. The totally asymmetric simple exclusion

2. The totally asymmetric simple exclusion

Bernoulli(ϱ) distribution

1. The totally asymmetric simple exclusion

2. The totally asymmetric simple exclusion

3. The totally asymmetric simple exclusion

4. The totally asymmetric simple exclusion

5. The totally asymmetric simple exclusion

6. The totally asymmetric simple exclusion

7. The totally asymmetric simple exclusion

8. The totally asymmetric simple exclusion

9. The totally asymmetric simple exclusion

10. The totally asymmetric simple exclusion

11. The totally asymmetric simple exclusion

12. The totally asymmetric simple exclusion

13. The totally asymmetric simple exclusion

14. The totally asymmetric simple exclusion

15. The totally asymmetric simple exclusion

16. The totally asymmetric simple exclusion

17. The totally asymmetric simple exclusion

18. The totally asymmetric simple exclusion

19. The totally asymmetric simple exclusion

20. The totally asymmetric simple exclusion

21. The totally asymmetric simple exclusion

22. The totally asymmetric simple exclusion

23. The totally asymmetric simple exclusion

24. The totally asymmetric simple exclusion

25. The totally asymmetric simple exclusion

26. The totally asymmetric simple exclusion

27. The totally asymmetric simple exclusion

28. The totally asymmetric simple exclusion

29. The totally asymmetric simple exclusion

30. The totally asymmetric simple exclusion

31. The totally asymmetric simple exclusion

32. The totally asymmetric simple exclusion

33. The totally asymmetric simple exclusion

34. The totally asymmetric simple exclusion

35. The totally asymmetric simple exclusion

36. The totally asymmetric simple exclusion

37. The totally asymmetric simple exclusion

38. The totally asymmetric simple exclusion

39. The totally asymmetric simple exclusion

40. The totally asymmetric simple exclusion

41. The totally asymmetric simple exclusion

42. The totally asymmetric simple exclusion

43. The totally asymmetric simple exclusion

44. The totally asymmetric simple exclusion

45. The totally asymmetric simple exclusion

$h_{x}(t)=$ height of the surface above x.

$h_{x}(t)=$ height of the surface above x.
$h_{x}(t)-h_{x}(0)=$ number of particles passed above x.

$h_{x}(t)=$ height of the surface above x.
$h_{x}(t)-h_{x}(0)=$ number of particles passed above x.

$h_{x}(t)=$ height of the surface above x.
$h_{x}(t)-h_{x}(0)=$ number of particles passed above x.

$h_{x}(t)=$ height of the surface above x.
$h_{x}(t)-h_{x}(0)=$ number of particles passed above x.

$h_{x}(t)=$ height of the surface above x.
$h_{x}(t)-h_{x}(0)=$ number of particles passed above x.

$h_{x}(t)=$ height of the surface above x.
$h_{x}(t)-h_{x}(0)=$ number of particles passed above x.
$h_{V t}(t)=$ number of particles passed through the moving window at $V t \quad(V \in \mathbb{R})$.

$h_{x}(t)=$ height of the surface above x.
$h_{x}(t)-h_{x}(0)=$ number of particles passed above x.
$h_{V t}(t)=$ number of particles passed through the moving window at $V t \quad(V \in \mathbb{R})$.

Ferrari - Fontes 1994:

$$
\lim _{t \rightarrow \infty} \frac{\operatorname{Var}\left(h_{V t}(t)\right)}{t}=\text { const } \cdot|V-C(\varrho)|,
$$

$C(\varrho)$ coming from the hydrodynamics of simple exclusion (characteristic speed).

$h_{x}(t)=$ height of the surface above x.
$h_{x}(t)-h_{x}(0)=$ number of particles passed above x.
$h_{V t}(t)=$ number of particles passed through the moving window at $V t \quad(V \in \mathbb{R})$.

Ferrari - Fontes 1994:

$$
\lim _{t \rightarrow \infty} \frac{\operatorname{Var}\left(h_{V t}(t)\right)}{t}=\text { const } \cdot|V-C(\varrho)|,
$$

$C(\varrho)$ coming from the hydrodynamics of simple exclusion (characteristic speed).
\rightsquigarrow How about $V=C(\varrho)$?

Occupation of $(i, j)=$ jump of P_{j} over H_{i}. Occupation of $(2,1)=$ jump of P_{1} over H_{2}.

Occupation of $(i, j)=$ jump of P_{j} over H_{i}. Occupation of $(2,1)=$ jump of P_{1} over H_{2}.

Occupation of $(i, j)=$ jump of P_{j} over H_{i}. Occupation of $(2,1)=$ jump of P_{1} over H_{2}.

Occupation of $(i, j)=$ jump of P_{j} over H_{i}. Occupation of $(2,1)=$ jump of P_{1} over H_{2}.

Occupation of $(i, j)=$ jump of P_{j} over H_{i}. Occupation of $(2,1)=$ jump of P_{1} over H_{2}.

Occupation of $(i, j)=$ jump of P_{j} over H_{i}. Occupation of $(2,1)=$ jump of P_{1} over H_{2}.
The time when this happens $=: G_{i j}$.

Occupation of $(i, j)=$ jump of P_{j} over H_{i}. Occupation of $(2,1)=$ jump of P_{1} over H_{2}.
The time when this happens $=: G_{i j}$.
The characteristic speed $V=C(\varrho)$ translates to

$$
m:=(1-\varrho)^{2} t \text { and } n:=\varrho^{2} t
$$

Will present results on $G_{m n}$.

Burke's Theorem:
P_{0} jumps according to a Poisson $(1-\varrho)$ process, governed by the right orange part

Burke's Theorem:
P_{0} jumps according to a Poisson $(1-\varrho)$ process, governed by the right orange part H_{0} jumps according to a Poisson(@) process, governed by the left orange part

Burke's Theorem:
P_{0} jumps according to a Poisson $(1-\varrho)$ process, governed by the right orange part H_{0} jumps according to a Poisson(@) process, governed by the left orange part independently of the Θ^{\prime} 's.

Burke's Theorem:
P_{0} jumps according to a Poisson $(1-\varrho)$ process, governed by the right orange part
H_{0} jumps according to a Poisson(@) process,
governed by the left orange part
independently of the ©'s.
Therefore:

2. The last passage model

2. The last passage model
 $\left.\begin{array}{rl}Q & \sim \text { Exponential }(1-\varrho) \\ & \sim \text { Exponential }(\varrho) \\ \text { Q } & \sim \text { Exponential }(1)\end{array}\right\}$ independently
2. The last passage model

$\left.\begin{array}{rl}Q & \sim \text { Exponential }(1-\varrho) \\ \odot & \sim \text { Exponential }(\varrho) \\ Q & \sim \text { Exponential }(1)\end{array}\right\}$ independently
Q starts ticking when its west neighbor becomes occupied
2. The last passage model

Q \sim Exponential $(1-\varrho)$)
$\bigcirc \sim$ Exponential (ϱ) independently
© \sim Exponential(1)

Q starts ticking when its west neighbor becomes occupied
-starts ticking when its south neighbor becomes occupied
2. The last passage model

\author{
Q \sim Exponential $(1-\varrho)$)
 $\left.\begin{array}{l}Q \sim \text { Exponential(} \varrho \text {) } \\ \Theta \sim \text { Exponential(1) }\end{array}\right\}$ independently

}

Q starts ticking when its west neighbor becomes occupied
©starts ticking when its south neighbor becomes occupied
Q starts ticking when both its west and south neighbors become occupied
2. The last passage model

M. Prähofer and H. Spohn 2002

$$
\left.\begin{array}{rl}
Q & \sim \text { Exponential }(1-\varrho) \\
& \sim \text { Exponential }(\varrho) \\
& \sim \text { Exponential }(1)
\end{array}\right\} \text { independently }
$$

Q starts ticking when its west neighbor becomes occupied
ostarts ticking when its south neighbor becomes occupied
Q starts ticking when both its west and south neighbors become occupied
2. The last passage model

M. Prähofer and H. Spohn 2002

$$
\left.\begin{array}{rl}
Q & \sim \text { Exponential }(1-\varrho) \\
& \sim \text { Exponential }(\varrho) \\
& \sim \text { Exponential }(1)
\end{array}\right\} \text { independently }
$$

Q starts ticking when its west neighbor becomes occupied
starts ticking when its south neighbor becomes occupied
Q starts ticking when both its west and south neighbors become occupied
$G_{i j}=$ the occupation time of (i, j)
2. The last passage model

M. Prähofer and H. Spohn 2002

starts ticking when its west neighbor becomes occupied
ostarts ticking when its south neighbor becomes occupied
Q starts ticking when both its west and south neighbors become occupied
$G_{i j}=$ the occupation time of (i, j)
$G_{i j}=$ the maximum weight collected by a north -east path from $(0,0)$ to (i, j).
2. The last passage model

M. Prähofer and H. Spohn 2002

starts ticking when its west neighbor becomes occupied

- starts ticking when its south neighbor becomes occupied
Q starts ticking when both its west and south neighbors become occupied
$G_{i j}=$ the occupation time of (i, j)
$G_{i j}=$ the maximum weight collected by a north -east path from $(0,0)$ to (i, j).

2. The last passage model

M. Prähofer and H. Spohn 2002

starts ticking when its west neighbor becomes occupied

- starts ticking when its south neighbor becomes occupied
Q starts ticking when both its west and south neighbors become occupied
$G_{i j}=$ the occupation time of (i, j)
$G_{i j}=$ the maximum weight collected by a north -east path from $(0,0)$ to (i, j).

3. Results

On the characteristics

$$
m:=(1-\varrho)^{2} t \text { and } n:=\varrho^{2} t
$$

Theorem:
$0<\liminf _{t \rightarrow \infty} \frac{\operatorname{Var}\left(G_{m n}\right)}{t^{2 / 3}} \leq \limsup _{t \rightarrow \infty} \frac{\operatorname{Var}\left(G_{m n}\right)}{t^{2 / 3}}<\infty$.

3. Results

On the characteristics

$$
m:=(1-\varrho)^{2} t \text { and } n:=\varrho^{2} t
$$

Theorem:
$0<\liminf _{t \rightarrow \infty} \frac{\operatorname{Var}\left(G_{m n}\right)}{t^{2 / 3}} \leq \limsup _{t \rightarrow \infty} \frac{\operatorname{Var}\left(G_{m n}\right)}{t^{2 / 3}}<\infty$.
Johansson (2000) identifies the limiting distribution of $\widetilde{h}_{V t}(t) / t^{1 / 3}$ in terms of Tracy-Widom GUE distributions, when \otimes and $\oplus \sim$ Exponential(1) (rarefaction fan).

3. Results

On the characteristics

$$
m:=(1-\varrho)^{2} t \text { and } n:=\varrho^{2} t
$$

Theorem:
$0<\liminf _{t \rightarrow \infty} \frac{\operatorname{Var}\left(G_{m n}\right)}{t^{2 / 3}} \leq \limsup _{t \rightarrow \infty} \frac{\operatorname{Var}\left(G_{m n}\right)}{t^{2 / 3}}<\infty$.
Johansson (2000) identifies the limiting distribution of $\widetilde{h}_{V t}(t) / t^{1 / 3}$ in terms of Tracy-Widom GUE distributions, when \otimes and $\odot \sim$ Exponential(1) (rarefaction fan).
P. L. Ferrari and H. Spohn (2005) identify the limiting distribution of $h_{x}(s)-\mathbf{E}\left[h_{C(o) t}(t)\right]$ when x and s are off characteristics by $t^{2 / 3}$ and $t^{1 / 3}$, respectively.

3. Results

On the characteristics

$$
m:=(1-\varrho)^{2} t \text { and } n:=\varrho^{2} t
$$

Theorem:
$0<\liminf _{t \rightarrow \infty} \frac{\operatorname{Var}\left(G_{m n}\right)}{t^{2 / 3}} \leq \limsup _{t \rightarrow \infty} \frac{\operatorname{Var}\left(G_{m n}\right)}{t^{2 / 3}}<\infty$.
Johansson (2000) identifies the limiting distribution of $\widetilde{h}_{V t}(t) / t^{1 / 3}$ in terms of Tracy-Widom GUE distributions, when \otimes and $\odot \sim$ Exponential(1) (rarefaction fan).
P. L. Ferrari and H. Spohn (2005) identify the limiting distribution of $h_{x}(s)-\mathbf{E}\left[h_{C(o) t}(t)\right]$ when x and s are off characteristics by $t^{2 / 3}$ and $t^{1 / 3}$, respectively.
Their method: RSK correspondence, random matrices.

$Z_{m n}$ is the exit point of the longest path to

$$
(m, n)=\left((1-\varrho)^{2} t, \varrho^{2} t\right)
$$

$Z_{m n}$ is the exit point of the longest path to

$$
(m, n)=\left((1-\varrho)^{2} t, \varrho^{2} t\right)
$$

Theorem:
For all large t and all $a>0$,

$$
\mathbf{P}\left\{Z_{m n} \geq a t^{2 / 3}\right\} \leq C a^{-3}
$$

Given $\varepsilon>0$, there is a $\delta>0$ such that

$$
\mathbf{P}\left\{1 \leq Z_{m n} \leq \delta t^{2 / 3}\right\} \leq \varepsilon
$$

for all large t.

Equilibrium:
$Q \sim$ Exponential $(1-\varrho)$
$\bullet \sim$ Exponential(ϱ)
independently
© \sim Exponential(1)

Equilibrium:

$$
\left.\begin{array}{rl}
Q & \sim \text { Exponential }(1-\varrho) \\
& \sim \text { Exponential }(\varrho) \\
& \sim \text { Exponential }(1)
\end{array}\right\} \text { independently }
$$

Rarefaction fan:

$$
\left.\begin{array}{rl}
Q & <\text { Exponential }(1-\varrho) \\
\bullet & <\text { Exponential }(\varrho) \\
\otimes & \sim \text { Exponential }(1)
\end{array}\right\} \text { independently }
$$

Equilibrium:

$$
\left.\begin{array}{rl}
Q & \sim \text { Exponential }(1-\varrho) \\
& \sim \text { Exponential }(\varrho) \\
& \sim \text { Exponential }(1)
\end{array}\right\} \text { independently }
$$

Rarefaction fan:

$$
\left.\begin{array}{rl}
Q & <\text { Exponential }(1-\varrho) \\
& <\text { Exponential }(\varrho) \\
\otimes & \sim \text { Exponential }(1)
\end{array}\right\} \text { independently }
$$

Theorem:
For $0<\alpha<1$ and all $t>1$,

$$
\mathbf{P}\left\{\left|G_{m n}-t\right|>a t^{1 / 3}\right\} \leq C a^{-3 \alpha / 2}
$$

Equilibrium:

$$
\left.\begin{array}{rl}
Q & \sim \text { Exponential }(1-\varrho) \\
& \sim \text { Exponential }(\varrho) \\
& \sim \text { Exponential }(1)
\end{array}\right\} \text { independently }
$$

Rarefaction fan:

$$
\left.\begin{array}{rl}
Q & <\text { Exponential }(1-\varrho) \\
& <\text { Exponential }(\varrho) \\
& \sim \text { Exponential }(1)
\end{array}\right\} \text { independently }
$$

Theorem:
For $0<\alpha<1$ and all $t>1$,

$$
\mathbf{P}\left\{\left|G_{m n}-t\right|>a t^{1 / 3}\right\} \leq C a^{-3 \alpha / 2}
$$

Also transversal $t^{2 / 3}$-deviations of the longest path.

Method:
Find a similar proof for Hammersley's process, and copy it.
E. Cator and P. Groeneboom 2005.

4. Last passage equilibrium

Equilibrium:

$Q \sim$ Exponential $(1-\varrho)$)
$\bigcirc \sim$ Exponential(ϱ) independently
© \sim Exponential(1)

4. Last passage equilibrium

Equilibrium:

> $\left.\begin{array}{rl}Q & \sim \text { Exponential }(1-\varrho) \\ & \sim \text { Exponential }(\varrho) \\ & \sim \text { Exponential }(1)\end{array}\right\}$ independently

G-increments:

$$
\begin{aligned}
& I_{i j}:=G_{i j}-G_{\{i-1\} j} \quad \text { for } i \geq 1, j \geq 0, \quad \text { and } \\
& J_{i j}:=G_{i j}-G_{i\{j-1\}} \quad \text { for } i \geq 0, j \geq 1 .
\end{aligned}
$$

4. Last passage equilibrium

Equilibrium:

> $\left.\begin{array}{rl}Q & \sim \text { Exponential }(1-\varrho) \\ & \sim \text { Exponential }(\varrho) \\ Q & \sim \text { Exponential }(1)\end{array}\right\}$ independently

G-increments:

$$
\begin{aligned}
& I_{i j}:=G_{i j}-G_{\{i-1\} j} \quad \text { for } i \geq 1, j \geq 0, \quad \text { and } \\
& J_{i j}:=G_{i j}-G_{i\{j-1\}} \quad \text { for } i \geq 0, j \geq 1 .
\end{aligned}
$$

\rightsquigarrow Any fixed southeast path meets independent increments

$$
\begin{aligned}
& I_{i j} \sim \text { Exponential }(1-\varrho) \text { and } \\
& J_{i j} \sim \text { Exponential }(\varrho) .
\end{aligned}
$$

4. Last passage equilibrium

Equilibrium:

> $\left.\begin{array}{rl}Q & \sim \text { Exponential }(1-\varrho) \\ & \sim \text { Exponential }(\varrho) \\ Q & \sim \text { Exponential }(1)\end{array}\right\}$ independently

G-increments:

$$
\begin{aligned}
& I_{i j}:=G_{i j}-G_{\{i-1\} j} \quad \text { for } i \geq 1, j \geq 0, \quad \text { and } \\
& J_{i j}:=G_{i j}-G_{i\{j-1\}} \quad \text { for } i \geq 0, j \geq 1 .
\end{aligned}
$$

\rightsquigarrow Any fixed southeast path meets independent increments

$$
\begin{aligned}
& I_{i j} \sim \text { Exponential }(1-\varrho) \text { and } \\
& J_{i j} \sim \text { Exponential }(\varrho) .
\end{aligned}
$$

Of course, this doesn't help directly with $G_{m n}$.

5. Upper bound

G^{ϱ} : weight collected by the longest path. Z^{ϱ} : exit point of the longest path.

5. Upper bound

G^{ϱ} : weight collected by the longest path.
Z^{ϱ} : exit point of the longest path.
U_{z}^{ϱ} : weight collected on the axis until z.

5. Upper bound

G^{ϱ} : weight collected by the longest path.
Z^{ϱ} : exit point of the longest path.
U_{z}^{ϱ} : weight collected on the axis until z.
A_{z} : largest weight of a path from z to (m, n).

5. Upper bound

G^{ϱ} : weight collected by the longest path.
Z^{ϱ} : exit point of the longest path.
U_{z}^{ϱ} : weight collected on the axis until z.
A_{z} : largest weight of a path from z to (m, n).
Step 1:

$$
U_{z}^{\lambda}+A_{z} \leq G^{\lambda}
$$

for any z, any $0<\lambda<1$.

5. Upper bound

G^{ϱ} : weight collected by the longest path.
Z^{ϱ} : exit point of the longest path.
U_{z}^{ϱ} : weight collected on the axis until z.
A_{z} : largest weight of a path from z to (m, n).
Step 1:

$$
U_{z}^{\lambda}+A_{z} \leq G^{\lambda}
$$

for any z, any $0<\lambda<1$. Fix $u \geq 0$ and $\lambda \geq \varrho$,

$$
\mathbf{P}\left\{Z^{\varrho}>u\right\}=\mathbf{P}\left\{\exists z>u: U_{Z}^{\varrho}+A_{z}(t)=G^{\varrho}\right\}
$$

5. Upper bound

G^{ϱ} : weight collected by the longest path.
Z^{ϱ} : exit point of the longest path.
U_{z}^{ϱ} : weight collected on the axis until z.
A_{z} : largest weight of a path from z to (m, n).
Step 1:

$$
U_{z}^{\lambda}+A_{z} \leq G^{\lambda}
$$

for any z, any $0<\lambda<1$. Fix $u \geq 0$ and $\lambda \geq \varrho$,

$$
\begin{aligned}
\mathbf{P}\left\{Z^{\varrho}>u\right\} & =\mathbf{P}\left\{\exists z>u: U_{z}^{\varrho}+A_{z}(t)=G^{\varrho}\right\} \\
& \leq \mathbf{P}\left\{\exists z>u: U_{z}^{\varrho}-U_{z}^{\lambda}+G^{\lambda} \geq G^{\varrho}\right\}
\end{aligned}
$$

5. Upper bound

G^{ϱ} : weight collected by the longest path.
Z^{ϱ} : exit point of the longest path.
U_{z}^{ϱ} : weight collected on the axis until z.
A_{z} : largest weight of a path from z to (m, n).
Step 1:

$$
U_{z}^{\lambda}+A_{z} \leq G^{\lambda}
$$

for any z, any $0<\lambda<1$. Fix $u \geq 0$ and $\lambda \geq \varrho$,

$$
\begin{aligned}
\mathbf{P}\left\{Z^{\varrho}>u\right\} & =\mathbf{P}\left\{\exists z>u: U_{z}^{\varrho}+A_{z}(t)=G^{\varrho}\right\} \\
& \leq \mathbf{P}\left\{\exists z>u: U_{z}^{\varrho}-U_{z}^{\lambda}+G^{\lambda} \geq G^{\varrho}\right\} \\
& =\mathbf{P}\left\{\exists z>u: U_{z}^{\lambda}-U_{z}^{\varrho} \leq G^{\lambda}-G^{\varrho}\right\}
\end{aligned}
$$

5. Upper bound

G^{ϱ} : weight collected by the longest path.
$Z \varrho$: exit point of the longest path.
U_{z}^{ϱ} : weight collected on the axis until z.
A_{z} : largest weight of a path from z to (m, n).
Step 1:

$$
U_{z}^{\lambda}+A_{z} \leq G^{\lambda}
$$

for any z, any $0<\lambda<1$. Fix $u \geq 0$ and $\lambda \geq \varrho$,

$$
\begin{aligned}
\mathbf{P}\left\{Z^{\varrho}>u\right\} & =\mathbf{P}\left\{\exists z>u: U_{z}^{\varrho}+A_{z}(t)=G^{\varrho}\right\} \\
& \leq \mathbf{P}\left\{\exists z>u: U_{z}^{\varrho}-U_{z}^{\lambda}+G^{\lambda} \geq G^{\varrho}\right\} \\
& =\mathbf{P}\left\{\exists z>u: U_{z}^{\lambda}-U_{Z}^{\varrho} \leq G^{\lambda}-G^{\varrho}\right\} \\
& \leq \mathbf{P}\left\{U_{u}^{\lambda}-U_{u}^{\varrho} \leq G^{\lambda}-G^{\varrho}\right\} .
\end{aligned}
$$

$$
\mathbf{P}\left\{Z^{\varrho}>u\right\} \leq \mathbf{P}\left\{U_{u}^{\lambda}-U_{u}^{\varrho} \leq G^{\lambda}-G^{\varrho}\right\}
$$

$$
\mathbf{P}\left\{Z^{\varrho}>u\right\} \leq \mathbf{P}\left\{U_{u}^{\lambda}-U_{u}^{\varrho} \leq G^{\lambda}-G^{\varrho}\right\}
$$

Step 2:
Optimize λ so that $\mathbf{E}\left(U_{u}^{\lambda}-G^{\lambda}\right)$ be maximal. (The equilibrium makes it possible to compute the expectation.) This makes the estimate sharp.

$$
\mathbf{P}\left\{Z^{\varrho}>u\right\} \leq \mathbf{P}\left\{U_{u}^{\lambda}-U_{u}^{\varrho} \leq G^{\lambda}-G^{\varrho}\right\} .
$$

Step 2:
Optimize λ so that $\mathbf{E}\left(U_{u}^{\lambda}-G^{\lambda}\right)$ be maximal. (The equilibrium makes it possible to compute the expectation.) This makes the estimate sharp.
Step 3:
Apply Chebyshev's inequality on the right-hand side. $\operatorname{Var}\left(U_{u}\right)$ is elementary.

$$
\mathbf{P}\left\{Z^{\varrho}>u\right\} \leq \mathbf{P}\left\{U_{u}^{\lambda}-U_{u}^{\varrho} \leq G^{\lambda}-G^{\varrho}\right\} .
$$

Step 2:
Optimize λ so that $\mathbf{E}\left(U_{u}^{\lambda}-G^{\lambda}\right)$ be maximal. (The equilibrium makes it possible to compute the expectation.) This makes the estimate sharp.
Step 3:
Apply Chebyshev's inequality on the right-hand side. $\operatorname{Var}\left(U_{u}\right)$ is elementary.
Step 4:
Prove, by a perturbation argument, that $\operatorname{Var}(G)$ is related to $\mathrm{E}\left(U_{Z^{+}}\right)$.

$$
\mathbf{P}\left\{Z^{\varrho}>u\right\} \leq \mathbf{P}\left\{U_{u}^{\lambda}-U_{u}^{\varrho} \leq G^{\lambda}-G^{\varrho}\right\} .
$$

Step 2:
Optimize λ so that $\mathbf{E}\left(U_{u}^{\lambda}-G^{\lambda}\right)$ be maximal. (The equilibrium makes it possible to compute the expectation.) This makes the estimate sharp.
Step 3:
Apply Chebyshev's inequality on the right-hand side. $\operatorname{Var}\left(U_{u}\right)$ is elementary.
Step 4:
Prove, by a perturbation argument, that $\operatorname{Var}(G)$ is related to $\mathrm{E}\left(U_{Z^{+}}\right)$.
Step 5:
A large deviation estimate connects $\mathbf{P}\left\{Z^{\varrho}>y\right\}$ and $\mathbf{P}\left\{U_{Z \varrho^{+}}^{\varrho}>y\right\}$.

$$
\rightsquigarrow \mathbf{P}\left\{U_{Z^{+}}^{\varrho}>y\right\} \leq C\left(\frac{t^{2}}{y^{4}} \cdot \mathbb{E}\left(U_{Z^{\varrho^{+}}}^{\varrho}\right)+\frac{t^{2}}{y^{3}}\right)
$$

$$
\mathbf{P}\left\{Z^{\varrho}>u\right\} \leq \mathbf{P}\left\{U_{u}^{\lambda}-U_{u}^{\varrho} \leq G^{\lambda}-G^{\varrho}\right\} .
$$

Step 2:
Optimize λ so that $\mathbf{E}\left(U_{u}^{\lambda}-G^{\lambda}\right)$ be maximal. (The equilibrium makes it possible to compute the expectation.) This makes the estimate sharp.
Step 3:
Apply Chebyshev's inequality on the right-hand side. $\operatorname{Var}\left(U_{u}\right)$ is elementary.
Step 4:
Prove, by a perturbation argument, that $\operatorname{Var}(G)$ is related to $\mathrm{E}\left(U_{Z^{+}}\right)$.
Step 5:
A large deviation estimate connects $\mathbf{P}\left\{Z^{\varrho}>y\right\}$ and $\mathbf{P}\left\{U_{Z \varrho^{+}}^{\varrho}>y\right\}$.

$$
\rightsquigarrow \mathbf{P}\left\{U_{Z^{+}}^{\varrho}>y\right\} \leq C\left(\frac{t^{2}}{y^{4}} \cdot \mathrm{E}\left(U_{Z^{\varrho^{+}}}^{\varrho}\right)+\frac{t^{2}}{y^{3}}\right)
$$

Conclude

$$
\limsup _{t \rightarrow \infty} \frac{\mathrm{E}\left(U_{Z^{\varrho}+}^{\varrho}\right)}{t^{2 / 3}}<\infty, \quad \limsup _{t \rightarrow \infty} \frac{\operatorname{Var}\left(G^{\varrho}\right)}{t^{2 / 3}}<\infty .
$$

6. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

6. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

6. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

6. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

6. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

6. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

6. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

6. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

6. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

6. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

6. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

6. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

6. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

6. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

6. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

6. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

6. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

6. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

6. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

6. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

6. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

6. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

6. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

6. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

6. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

6. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

6. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

6. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

6. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

6. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

6. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

6. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

6. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

6. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

6. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

6. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

6. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

6. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

6. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

6. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

6. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

6. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

6. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

6. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

6. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

6. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?
The competition interface follows the same rules as the second class particle of simple exclusion.

6. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?
The competition interface follows the same rules as the second class particle of simple exclusion.
If it passes left of (m, n), then $G_{m n}$ is not sensitive to decreasing the weights on the j-axis. If it passes below (m, n), then $G_{m n}$ is not sensitive to decreasing the \otimes weights on the i-axis.

6. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?
The competition interface follows the same rules as the second class particle of simple exclusion.
If it passes left of (m, n), then $G_{m n}$ is not sensitive to decreasing the weights on the j-axis. If it passes below (m, n), then $G_{m n}$ is not sensitive to decreasing the \otimes weights on the i-axis. \rightsquigarrow One bounds Z-probabilities differently in these cases.

7. Time-reversal and the lower bound

\rightsquigarrow Z-probabilities are connected to competition interface-probabilities.

7. Time-reversal and the lower bound

\rightsquigarrow Z-probabilities are connected to competition interface-probabilities.

7. Time-reversal and the lower bound

\rightsquigarrow Z-probabilities are connected to competition interface-probabilities.

7. Time-reversal and the lower bound

\rightsquigarrow Z-probabilities are connected to competition interface-probabilities.

7. Time-reversal and the lower bound

\rightsquigarrow Z-probabilities are connected to competition interface-probabilities.

7. Time-reversal and the lower bound

\rightsquigarrow Z-probabilities are connected to competition interface-probabilities.

7. Time-reversal and the lower bound

\rightsquigarrow Z-probabilities are connected to competition interface-probabilities.

7. Time-reversal and the lower bound

\rightsquigarrow Z-probabilities are connected to competition interface-probabilities.

7. Time-reversal and the lower bound

\rightsquigarrow Z-probabilities are connected to competition interface-probabilities.

7. Time-reversal and the lower bound

\rightsquigarrow Z-probabilities are connected to competition interface-probabilities.

7. Time-reversal and the lower bound

\rightsquigarrow Z-probabilities are connected to competition interface-probabilities.

7. Time-reversal and the lower bound

\rightsquigarrow Z-probabilities are connected to competition interface-probabilities.

7. Time-reversal and the lower bound

\rightsquigarrow Z-probabilities are connected to competition interface-probabilities.

7. Time-reversal and the lower bound

\rightsquigarrow Z-probabilities are connected to competition interface-probabilities.

7. Time-reversal and the lower bound

\rightsquigarrow Z-probabilities are connected to competition interface-probabilities.
competition interface $=$ longest path of the reversed model.

7. Time-reversal and the lower bound

\rightsquigarrow Z-probabilities are connected to competition interface-probabilities.
competition interface $=$ longest path of the reversed model.
\rightsquigarrow competition interface-probabilities are in fact Z-probabilities.

7. Time-reversal and the lower bound

\rightsquigarrow Z-probabilities are connected to competition interface-probabilities.
competition interface $=$ longest path of the reversed model.
\rightsquigarrow competition interface-probabilities are in fact Z-probabilities.
Conclude
$\liminf _{t \rightarrow \infty} \frac{E\left(U_{Z Z^{+}}^{\varrho}\right)}{t^{2 / 3}}>0, \quad \liminf _{t \rightarrow \infty} \frac{\operatorname{Var}\left(G^{\varrho}\right)}{t^{2 / 3}}>0$.

8. Further directions

\rightarrow We only have deviation probability results for the case of the rarefaction fan. How about $\operatorname{Var}(G)$ in this case?

8. Further directions

\rightarrow We only have deviation probability results for the case of the rarefaction fan. How about $\operatorname{Var}(G)$ in this case?
\rightarrow In the equilibrium case we have the scaling of $\operatorname{Var}(G)$. Prove the same scaling for $\operatorname{Var}\left(h_{V t}(t)\right)$.

8. Further directions

\rightarrow We only have deviation probability results for the case of the rarefaction fan. How about $\operatorname{Var}(G)$ in this case?
\rightarrow In the equilibrium case we have the scaling of $\operatorname{Var}(G)$. Prove the same scaling for $\operatorname{Var}\left(h_{V t}(t)\right)$.
\rightarrow Generalize. These methods are more general than the RSK and random matrices arguments. The last-passage picture is specific to the totally asymmetric simple exclusion. Say something about the general simple exclusion.

8. Further directions

\rightarrow We only have deviation probability results for the case of the rarefaction fan. How about $\operatorname{Var}(G)$ in this case?
\rightarrow In the equilibrium case we have the scaling of $\operatorname{Var}(G)$. Prove the same scaling for $\operatorname{Var}\left(h_{V t}(t)\right)$.
\rightarrow Generalize. These methods are more general than the RSK and random matrices arguments. The last-passage picture is specific to the totally asymmetric simple exclusion. Say something about the general simple exclusion.
\rightarrow Generalize even more: drop the last-passage picture. These methods have the potential to extend to other particle systems directly (zero range, bricklayers', ...?).

Thank you.

