$t^{1/3}$ -order fluctuations in the simple exclusion process

Márton Balázs

Joint work with

Eric Cator (Delft University of Technology)

and

Timo Seppäläinen

Madison, March 9

- 1. The totally asymmetric simple exclusion
- 2. The last passage model
- 3. Results
- 4. Last passage equilibrium
- 5. Upper bound
- 6. The competition interface
- 7. Time-reversal and the lower bound
- 8. Further directions

 $\mathsf{Bernoulli}(\varrho)$ distribution

 $\mathsf{Bernoulli}(\varrho) \ \mathsf{distribution}$

 $h_x(t)$ = height of the surface above x.

 $h_x(t) =$ height of the surface above x. $h_x(t) - h_x(0) =$ number of particles passed above x.

 $h_x(t)$ = height of the surface above x. $h_x(t) - h_x(0)$ = number of particles passed above x.

 $h_x(t) =$ height of the surface above x. $h_x(t) - h_x(0) =$ number of particles passed above x.

 $h_x(t)$ = height of the surface above x. $h_x(t) - h_x(0)$ = number of particles passed above x.

 $h_x(t) =$ height of the surface above x. $h_x(t) - h_x(0) =$ number of particles passed above x.

 $h_x(t)$ = height of the surface above x. $h_x(t) - h_x(0)$ = number of particles passed above x.

 $h_{Vt}(t) =$ number of particles passed through the moving window at Vt $(V \in \mathbb{R})$.

 $h_x(t)$ = height of the surface above x. $h_x(t) - h_x(0)$ = number of particles passed above x.

 $h_{Vt}(t) =$ number of particles passed through the moving window at Vt $(V \in \mathbb{R})$.

Ferrari - Fontes 1994:

$$\lim_{t \to \infty} \frac{\operatorname{Var}(h_{Vt}(t))}{t} = \operatorname{const} \cdot |V - C(\varrho)|,$$

 $C(\varrho)$ coming from the *hydrodynamics* of simple exclusion (characteristic speed).

 $h_x(t)$ = height of the surface above x. $h_x(t) - h_x(0)$ = number of particles passed above x.

 $h_{Vt}(t) =$ number of particles passed through the moving window at Vt $(V \in \mathbb{R})$.

Ferrari - Fontes 1994:

$$\lim_{t\to\infty} \frac{\operatorname{Var}(h_{Vt}(t))}{t} = \operatorname{const} \cdot |V - C(\varrho)|,$$

 $C(\varrho)$ coming from the *hydrodynamics* of simple exclusion (characteristic speed).

 \rightsquigarrow How about $V = C(\varrho)$?

Occupation of $(i, j) = \text{jump of } P_j \text{ over } H_i$. Occupation of $(2, 1) = \text{jump of } P_1 \text{ over } H_2$.

Occupation of $(i, j) = \text{jump of } P_j \text{ over } H_i$. Occupation of $(2, 1) = \text{jump of } P_1 \text{ over } H_2$.

Occupation of $(i, j) = \text{jump of } P_j \text{ over } H_i$. Occupation of $(2, 1) = \text{jump of } P_1 \text{ over } H_2$.

Occupation of $(i, j) = \text{jump of } P_j \text{ over } H_i$. Occupation of $(2, 1) = \text{jump of } P_1 \text{ over } H_2$.

Occupation of $(i, j) = \text{jump of } P_j \text{ over } H_i$. Occupation of $(2, 1) = \text{jump of } P_1 \text{ over } H_2$.

Occupation of $(i, j) = \text{jump of } P_j \text{ over } H_i$. Occupation of $(2, 1) = \text{jump of } P_1 \text{ over } H_2$. The time when this happens $= : G_{ij}$.

Occupation of (i,j)= jump of P_j over H_i . Occupation of (2,1)= jump of P_1 over H_2 . The time when this happens $=:G_{ij}$. The characteristic speed $V=C(\varrho)$ translates to

$$m:=(1-\varrho)^2t$$
 and $n:=\varrho^2t$.

Will present results on G_{mn} .

 P_0 jumps according to a Poisson $(1-\varrho)$ process, governed by the right orange part

 P_0 jumps according to a Poisson $(1-\varrho)$ process, governed by the right orange part

 H_0 jumps according to a Poisson(ϱ) process, governed by the left orange part

 P_0 jumps according to a Poisson $(1-\varrho)$ process, governed by the right orange part H_0 jumps according to a Poisson (ϱ) process, governed by the left orange part independently of the \circ 's.

 P_0 jumps according to a Poisson $(1-\varrho)$ process, governed by the right orange part H_0 jumps according to a Poisson (ϱ) process, governed by the left orange part independently of the \mathfrak{g} 's.

Therefore:

$$\begin{array}{l}_{\odot} \sim \mathsf{Exponential}(1-\varrho) \\ {}_{\odot} \sim \mathsf{Exponential}(\varrho) \\ {}_{\odot} \sim \mathsf{Exponential}(1) \end{array} \right\} \text{independently}$$

starts ticking when its west neighbor becomes occupied

$$\begin{array}{l}_{\odot} \sim \mathsf{Exponential}(1-\varrho) \\ \\ \begin{array}{l}_{\odot} \sim \mathsf{Exponential}(\varrho) \\ \\ \\ \odot \sim \mathsf{Exponential}(1) \end{array} \end{array} \right\} \text{independently}$$

- starts ticking when its west neighbor becomes occupied
- starts ticking when its south neighbor becomes occupied

$$\begin{array}{l}_{\odot} \sim \mathsf{Exponential}(1-\varrho) \\ \\ \begin{array}{l}_{\odot} \sim \mathsf{Exponential}(\varrho) \\ \\ \\ \odot \sim \mathsf{Exponential}(1) \end{array} \end{array} \right\} \text{independently}$$

- starts ticking when its west neighbor becomes occupied
- starts ticking when its south neighbor becomes occupied
- starts ticking when both its west and south neighbors become occupied

M. Prähofer and H. Spohn 2002

$$\begin{array}{l}_{\odot} \sim \mathsf{Exponential}(1-\varrho) \\ \\ \begin{array}{l}_{\odot} \sim \mathsf{Exponential}(\varrho) \\ \\ \\ \odot \sim \mathsf{Exponential}(1) \end{array} \end{array} \right\} \text{independently}$$

- starts ticking when its west neighbor becomes occupied
- starts ticking when its south neighbor becomes occupied
- starts ticking when both its west and south neighbors become occupied

M. Prähofer and H. Spohn 2002

$$\begin{array}{l}_{\odot} \sim \mathsf{Exponential}(1-\varrho) \\ \\ \begin{array}{l}_{\odot} \sim \mathsf{Exponential}(\varrho) \\ \\ \\ \odot \sim \mathsf{Exponential}(1) \end{array} \end{array} \right\} \text{independently}$$

- starts ticking when its west neighbor becomes occupied
- starts ticking when its south neighbor becomes occupied
- starts ticking when both its west and south neighbors become occupied

$$G_{ij}$$
 = the occupation time of (i, j)

M. Prähofer and H. Spohn 2002

$$\begin{array}{l}_{\odot} \sim \mathsf{Exponential}(1-\varrho) \\ \\ \begin{array}{l}_{\odot} \sim \mathsf{Exponential}(\varrho) \\ \\ \\ \odot \sim \mathsf{Exponential}(1) \end{array} \end{array} \right\} \text{independently}$$

- starts ticking when its west neighbor becomes occupied
- starts ticking when its south neighbor becomes occupied
- starts ticking when both its west and south neighbors become occupied

 G_{ij} = the occupation time of (i, j)

 G_{ij} = the maximum weight collected by a north -east path from (0,0) to (i,j).

M. Prähofer and H. Spohn 2002

$$\begin{array}{l}_{\odot} \sim \mathsf{Exponential}(1-\varrho) \\ \\ \begin{array}{l}_{\odot} \sim \mathsf{Exponential}(\varrho) \\ \\ \\ \odot \sim \mathsf{Exponential}(1) \end{array} \end{array} \right\} \text{independently}$$

- starts ticking when its west neighbor becomes occupied
- starts ticking when its south neighbor becomes occupied
- starts ticking when both its west and south neighbors become occupied

 G_{ij} = the occupation time of (i, j)

 G_{ij} = the maximum weight collected by a north -east path from (0,0) to (i,j).

M. Prähofer and H. Spohn 2002

$$\begin{array}{l}_{\odot} \sim \mathsf{Exponential}(1-\varrho) \\ \\ \begin{array}{l}_{\odot} \sim \mathsf{Exponential}(\varrho) \\ \\ \\ \odot \sim \mathsf{Exponential}(1) \end{array} \end{array} \right\} \text{independently}$$

- starts ticking when its west neighbor becomes occupied
- starts ticking when its south neighbor becomes occupied
- starts ticking when both its west and south neighbors become occupied

 G_{ij} = the occupation time of (i, j)

 G_{ij} = the maximum weight collected by a north -east path from (0,0) to (i,j).

On the characteristics

$$m := (1 - \varrho)^2 t$$
 and $n := \varrho^2 t$,

Theorem:

$$0<\liminf_{t\to\infty}rac{ extsf{Var}(G_{mn})}{t^{2/3}}\leq\limsup_{t\to\infty}rac{ extsf{Var}(G_{mn})}{t^{2/3}}<\infty.$$

On the characteristics

$$m := (1 - \varrho)^2 t$$
 and $n := \varrho^2 t$,

Theorem:

$$0<\liminf_{t\to\infty}\frac{\operatorname{Var}(G_{mn})}{t^{2/3}}\leq \limsup_{t\to\infty}\frac{\operatorname{Var}(G_{mn})}{t^{2/3}}<\infty.$$

Johansson (2000) identifies the limiting distribution of $\tilde{h}_{Vt}(t)/t^{1/3}$ in terms of Tracy-Widom GUE distributions, when \odot and \odot \sim Exponential(1) (rarefaction fan).

On the characteristics

$$m := (1 - \varrho)^2 t$$
 and $n := \varrho^2 t$,

Theorem:

$$0<\liminf_{t o\infty}rac{ extsf{Var}(G_{mn})}{t^{2/3}}\leq\limsup_{t o\infty}rac{ extsf{Var}(G_{mn})}{t^{2/3}}<\infty.$$

Johansson (2000) identifies the limiting distribution of $\widetilde{h}_{Vt}(t)/t^{1/3}$ in terms of Tracy-Widom GUE distributions, when \odot and \odot \sim Exponential(1) (rarefaction fan).

P. L. Ferrari and H. Spohn (2005) identify the limiting distribution of $h_x(s) - \mathbf{E}[h_{C(\varrho)t}(t)]$ when x and s are off characteristics by $t^{2/3}$ and $t^{1/3}$, respectively.

On the characteristics

$$m := (1 - \rho)^2 t$$
 and $n := \rho^2 t$,

Theorem:

$$0<\liminf_{t\to\infty}\frac{\operatorname{Var}(G_{mn})}{t^{2/3}}\leq \limsup_{t\to\infty}\frac{\operatorname{Var}(G_{mn})}{t^{2/3}}<\infty.$$

Johansson (2000) identifies the limiting distribution of $\widetilde{h}_{Vt}(t)/t^{1/3}$ in terms of Tracy-Widom GUE distributions, when \odot and \odot \sim Exponential(1) (rarefaction fan).

P. L. Ferrari and H. Spohn (2005) identify the limiting distribution of $h_x(s) - \mathbf{E}[h_{C(\varrho)t}(t)]$ when x and s are off characteristics by $t^{2/3}$ and $t^{1/3}$, respectively.

Their method: RSK correspondence, random matrices.

 ${\it Z}_{mn}$ is the exit point of the longest path to

$$(m, n) = ((1 - \varrho)^2 t, \varrho^2 t).$$

 Z_{mn} is the exit point of the longest path to

$$(m, n) = ((1 - \varrho)^2 t, \varrho^2 t).$$

Theorem:

For all large t and all a > 0,

$$\mathbf{P}\{\mathbf{Z}_{mn} \ge at^{2/3}\} \le Ca^{-3}.$$

Given $\varepsilon > 0$, there is a $\delta > 0$ such that

$$P\{1 \le Z_{mn} \le \delta t^{2/3}\} \le \varepsilon$$

for all large t.


```
\begin{array}{l}_{\odot} \sim \mathsf{Exponential}(1-\varrho) \\ \\ \sim \mathsf{Exponential}(\varrho) \\ \\ \odot \sim \mathsf{Exponential}(1) \end{array} \right\} \text{independently}
```


$$\begin{array}{l}_{\odot} \sim \mathsf{Exponential}(1-\varrho) \\ \\ {}_{\odot} \sim \mathsf{Exponential}(\varrho) \\ \\ {}_{\odot} \sim \mathsf{Exponential}(1) \end{array} \right\} \text{independently}$$

Rarefaction fan:

$$\begin{array}{l}_{\odot} \sim \mathsf{Exponential}(1-\varrho) \\ \\ {}_{\odot} \sim \mathsf{Exponential}(\varrho) \\ \\ {}_{\odot} \sim \mathsf{Exponential}(1) \end{array} \right\} \text{ independently}$$

Rarefaction fan:

Theorem:

For $0 < \alpha < 1$ and all t > 1,

$$\mathbf{P}\{|G_{mn} - t| > at^{1/3}\} \le Ca^{-3\alpha/2}.$$

$$\begin{array}{l}_{\odot} \sim \mathsf{Exponential}(1-\varrho) \\ \\ {}_{\odot} \sim \mathsf{Exponential}(\varrho) \\ \\ {}_{\odot} \sim \mathsf{Exponential}(1) \end{array} \right\} \text{ independently}$$

Rarefaction fan:

Theorem:

For $0 < \alpha < 1$ and all t > 1,

$$\mathbf{P}\{|G_{mn} - t| > at^{1/3}\} \le Ca^{-3\alpha/2}.$$

Also transversal $t^{2/3}$ -deviations of the longest path.

Method:

Find a similar proof for Hammersley's process, and copy it.

E. Cator and P. Groeneboom 2005.

4. Last passage equilibrium $\frac{1}{j}$

Equilibrium:

$$\begin{array}{l}_{\odot} \sim \mathsf{Exponential}(1-\varrho) \\ \\ \sim \mathsf{Exponential}(\varrho) \\ \\ \odot \sim \mathsf{Exponential}(1) \end{array} \right\} \text{independently}$$

4. Last passage equilibrium

Equilibrium:

$$\begin{array}{l}_{\circlearrowleft} \sim \mathsf{Exponential}(1-\varrho) \\ \\ \sim \mathsf{Exponential}(\varrho) \\ \\ \bigcirc \sim \mathsf{Exponential}(1) \end{array} \right\} \text{independently}$$

G-increments:

$$egin{aligned} I_{ij} &:= G_{ij} - G_{\{i-1\}j} & \text{for } i \geq 1, \ j \geq 0, \ J_{ij} &:= G_{ij} - G_{i\{j-1\}} & \text{for } i \geq 0, \ j \geq 1. \end{aligned}$$
 and

4. Last passage equilibrium $\frac{1}{j}$

Equilibrium:

$$\begin{array}{l}_{\bigcirc} \sim \mathsf{Exponential}(1-\varrho) \\ \\ \bigcirc \sim \mathsf{Exponential}(\varrho) \\ \\ \bigcirc \sim \mathsf{Exponential}(1) \end{array} \right\} \text{independently}$$

G-increments:

$$egin{aligned} I_{ij} &:= G_{ij} - G_{\{i-1\}j} & ext{ for } i \geq 1, \ j \geq 0, \ J_{ij} &:= G_{ij} - G_{i\{j-1\}} & ext{ for } i \geq 0, \ j \geq 1. \end{aligned}$$
 and

→ Any fixed southeast path meets independent increments

$$I_{ij} \sim \mathsf{Exponential}(1-\varrho)$$
 and $J_{ij} \sim \mathsf{Exponential}(\varrho).$

4. Last passage equilibrium

Equilibrium:

$$\begin{array}{l}_{\bigcirc} \sim \mathsf{Exponential}(1-\varrho) \\ \\ \bigcirc \sim \mathsf{Exponential}(\varrho) \\ \\ \bigcirc \sim \mathsf{Exponential}(1) \end{array} \right\} \text{ independently}$$

G-increments:

$$egin{aligned} I_{ij} &:= G_{ij} - G_{\{i-1\}j} & ext{ for } i \geq 1, \ j \geq 0, \ J_{ij} &:= G_{ij} - G_{i\{j-1\}} & ext{ for } i \geq 0, \ j \geq 1. \end{aligned}$$
 and

→ Any fixed southeast path meets independent increments

$$I_{ij} \sim \mathsf{Exponential}(1-\varrho)$$
 and $J_{ij} \sim \mathsf{Exponential}(\varrho).$

Of course, this doesn't help directly with G_{mn} .

 G^{ϱ} : weight collected by the longest path.

 Z^{ϱ} : exit point of the longest path.

 G^{ϱ} : weight collected by the longest path.

 Z^{ϱ} : exit point of the longest path.

 U_z^{ϱ} : weight collected on the axis until z.

 G^{ϱ} : weight collected by the longest path.

 Z^{ϱ} : exit point of the longest path.

 U_z^{ϱ} : weight collected on the axis until z.

 A_z : largest weight of a path from z to (m, n).

 G^{ϱ} : weight collected by the longest path.

 Z^{ϱ} : exit point of the longest path.

 U_z^{ϱ} : weight collected on the axis until z.

 A_z : largest weight of a path from z to (m, n).

Step 1:

$$U_z^{\lambda} + A_z \le G^{\lambda}$$

for any z, any $0 < \lambda < 1$.

 G^{ϱ} : weight collected by the longest path.

 Z^{ϱ} : exit point of the longest path.

 U_z^ϱ : weight collected on the axis until z.

 A_z : largest weight of a path from z to (m, n).

Step 1:

$$U_z^{\lambda} + A_z \le G^{\lambda}$$

$$\mathbf{P}\{\mathbf{Z}^{\varrho} > u\} = \mathbf{P}\{\exists z > u : \mathbf{U}_{z}^{\varrho} + A_{z}(t) = \mathbf{G}^{\varrho}\}$$

 G^{ϱ} : weight collected by the longest path.

 Z^{ϱ} : exit point of the longest path.

 U_z^ϱ : weight collected on the axis until z.

 A_z : largest weight of a path from z to (m, n).

Step 1:

$$U_z^{\lambda} + A_z \le G^{\lambda}$$

$$\mathbf{P}\{\mathbf{Z}^{\varrho} > u\} = \mathbf{P}\{\exists z > u : \mathbf{U}_{z}^{\varrho} + A_{z}(t) = \mathbf{G}^{\varrho}\}$$

$$\leq \mathbf{P}\{\exists z > u : \mathbf{U}_{z}^{\varrho} - \mathbf{U}_{z}^{\lambda} + \mathbf{G}^{\lambda} \geq \mathbf{G}^{\varrho}\}$$

 G^{ϱ} : weight collected by the longest path.

 Z^{ϱ} : exit point of the longest path.

 U_z^ϱ : weight collected on the axis until z.

 A_z : largest weight of a path from z to (m, n).

Step 1:

$$U_z^{\lambda} + A_z \le G^{\lambda}$$

$$P\{Z^{\varrho} > u\} = P\{\exists z > u : U_z^{\varrho} + A_z(t) = G^{\varrho}\}$$

$$\leq P\{\exists z > u : U_z^{\varrho} - U_z^{\lambda} + G^{\lambda} \geq G^{\varrho}\}$$

$$= P\{\exists z > u : U_z^{\lambda} - U_z^{\varrho} \leq G^{\lambda} - G^{\varrho}\}$$

 G^{ϱ} : weight collected by the longest path.

 Z^{ϱ} : exit point of the longest path.

 U_z^{ϱ} : weight collected on the axis until z.

 A_z : largest weight of a path from z to (m, n).

Step 1:

$$U_z^{\lambda} + A_z \le G^{\lambda}$$

$$\mathbf{P}\{Z^{\varrho} > u\} = \mathbf{P}\{\exists z > u : U_z^{\varrho} + A_z(t) = G^{\varrho}\}
\leq \mathbf{P}\{\exists z > u : U_z^{\varrho} - U_z^{\lambda} + G^{\lambda} \geq G^{\varrho}\}
= \mathbf{P}\{\exists z > u : U_z^{\lambda} - U_z^{\varrho} \leq G^{\lambda} - G^{\varrho}\}
\leq \mathbf{P}\{U_u^{\lambda} - U_u^{\varrho} \leq G^{\lambda} - G^{\varrho}\}.$$

$$\mathbf{P}\{Z^{\varrho} > u\} \le \mathbf{P}\{U_u^{\lambda} - U_u^{\varrho} \le G^{\lambda} - G^{\varrho}\}.$$

$$\mathbf{P}\{Z^{\varrho} > u\} \le \mathbf{P}\{U_u^{\lambda} - U_u^{\varrho} \le G^{\lambda} - G^{\varrho}\}.$$

Optimize λ so that $\mathrm{E}(U_u^{\lambda}-G^{\lambda})$ be maximal. (The equilibrium makes it possible to compute the expectation.) This makes the estimate sharp.

$$\mathbf{P}\{Z^{\varrho} > u\} \le \mathbf{P}\{U_{u}^{\lambda} - U_{u}^{\varrho} \le G^{\lambda} - G^{\varrho}\}.$$

Optimize λ so that $\mathrm{E}(U_u^\lambda-G^\lambda)$ be maximal. (The equilibrium makes it possible to compute the expectation.) This makes the estimate sharp.

Step 3:

Apply Chebyshev's inequality on the right-hand side. $Var(U_u)$ is elementary.

$$\mathbf{P}\{Z^{\varrho} > u\} \le \mathbf{P}\{U_u^{\lambda} - U_u^{\varrho} \le G^{\lambda} - G^{\varrho}\}.$$

Optimize λ so that $\mathrm{E}(U_u^{\lambda}-G^{\lambda})$ be maximal. (The equilibrium makes it possible to compute the expectation.) This makes the estimate sharp.

Step 3:

Apply Chebyshev's inequality on the right-hand side. $Var(U_u)$ is elementary.

Step 4:

Prove, by a perturbation argument, that Var(G) is related to $E(U_{Z^+})$.

$$\mathbf{P}\{Z^{\varrho} > u\} \le \mathbf{P}\{U_u^{\lambda} - U_u^{\varrho} \le G^{\lambda} - G^{\varrho}\}.$$

Optimize λ so that $\mathbf{E}(U_u^{\lambda} - G^{\lambda})$ be maximal. (The equilibrium makes it possible to compute the expectation.) This makes the estimate sharp.

Step 3:

Apply Chebyshev's inequality on the right-hand side. $Var(U_u)$ is elementary.

Step 4:

Prove, by a perturbation argument, that Var(G) is related to $E(U_{Z^+})$.

Step 5:

A large deviation estimate connects $\mathbf{P}\{Z^{\varrho} > y\}$ and $\mathbf{P}\{U^{\varrho}_{Z^{\varrho+}} > y\}$.

$$\longrightarrow \mathbf{P}\{U_{Z^+}^{\varrho} > y\} \le C\left(\frac{t^2}{y^4} \cdot \mathbf{E}(U_{Z^{\varrho+}}^{\varrho}) + \frac{t^2}{y^3}\right)$$

$$\mathbf{P}\{Z^{\varrho} > u\} \le \mathbf{P}\{U_u^{\lambda} - U_u^{\varrho} \le G^{\lambda} - G^{\varrho}\}.$$

Optimize λ so that $\mathrm{E}(U_u^{\lambda}-G^{\lambda})$ be maximal. (The equilibrium makes it possible to compute the expectation.) This makes the estimate sharp.

Step 3:

Apply Chebyshev's inequality on the right-hand side. $Var(U_u)$ is elementary.

Step 4:

Prove, by a perturbation argument, that Var(G) is related to $E(U_{Z^+})$.

Step 5:

A large deviation estimate connects $\mathbf{P}\{Z^{\varrho} > y\}$ and $\mathbf{P}\{U^{\varrho}_{Z\varrho+} > y\}$.

$$\longrightarrow \mathbf{P}\{U_{Z^+}^{\varrho} > y\} \le C\left(\frac{t^2}{y^4} \cdot \mathbf{E}(U_{Z^{\varrho^+}}^{\varrho}) + \frac{t^2}{y^3}\right)$$

Conclude

$$\limsup_{t\to\infty}\frac{\mathbf{E}(U_{Z\varrho+}^{\varrho})}{t^{2/3}}<\infty,\quad \limsup_{t\to\infty}\frac{\mathbf{Var}(G^{\varrho})}{t^{2/3}}<\infty.$$

Ferrari, Martin, Pimentel (2005)

Ferrari, Martin, Pimentel (2005)

Which squares are infected via (1,0) and via (0,1)?

The competition interface follows the same rules as the *second class particle* of simple exclusion.

Ferrari, Martin, Pimentel (2005)

Which squares are infected via (1,0) and via (0,1)?

The competition interface follows the same rules as the *second class particle* of simple exclusion.

If it passes left of (m, n), then G_{mn} is not sensitive to decreasing the \odot weights on the j-axis. If it passes below (m, n), then G_{mn} is not sensitive to decreasing the \odot weights on the i-axis.

Ferrari, Martin, Pimentel (2005)

Which squares are infected via (1,0) and via (0,1)?

The competition interface follows the same rules as the *second class particle* of simple exclusion.

If it passes left of (m,n), then G_{mn} is not sensitive to decreasing the \odot weights on the j-axis. If it passes below (m,n), then G_{mn} is not sensitive to decreasing the \odot weights on the i-axis. \leadsto One bounds Z-probabilities differently in these cases.

 \leadsto Z-probabilities are connected to competition interface-probabilities.

competition interface = longest path of the reversed model.

→ Z-probabilities are connected to competition interface-probabilities.

competition interface = longest path of the reversed model.

 \leadsto competition interface-probabilities are in fact Z-probabilities.

 \leadsto Z-probabilities are connected to competition interface-probabilities.

competition interface = longest path of the reversed model.

Conclude

$$\liminf_{t\to\infty}\frac{\mathbf{E}(U_{Z^{\varrho+}}^{\varrho})}{t^{2/3}}>0,\quad \liminf_{t\to\infty}\frac{\mathbf{Var}(G^{\varrho})}{t^{2/3}}>0.$$

 \rightarrow We only have deviation probability results for the case of the rarefaction fan. How about Var(G) in this case?

- \rightarrow We only have deviation probability results for the case of the rarefaction fan. How about Var(G) in this case?
- \rightarrow In the equilibrium case we have the scaling of Var(G). Prove the same scaling for $Var(h_{Vt}(t))$.

- \rightarrow We only have deviation probability results for the case of the rarefaction fan. How about Var(G) in this case?
- \rightarrow In the equilibrium case we have the scaling of Var(G). Prove the same scaling for $Var(h_{Vt}(t))$.
- → Generalize. These methods are more general than the RSK and random matrices arguments. The last-passage picture is specific to the totally asymmetric simple exclusion. Say something about the general simple exclusion.

- \rightarrow We only have deviation probability results for the case of the rarefaction fan. How about Var(G) in this case?
- \rightarrow In the equilibrium case we have the scaling of Var(G). Prove the same scaling for $Var(h_{Vt}(t))$.
- → Generalize. These methods are more general than the RSK and random matrices arguments. The last-passage picture is specific to the totally asymmetric simple exclusion. Say something about the general simple exclusion.
- → Generalize even more: drop the last-passage picture. These methods have the potential to extend to other particle systems directly (zero range, bricklayers', ...?).

Thank you.