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1. ASEP: Interacting particles

-
x

◦ ◦ • • • ◦ ◦•

-3 -2 -1 0 1 2 3 4

Bernoulli(̺) distribution

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site is occupied by another

particle.

The Bernoulli(̺) distribution is time-stationary for any (0 ≤ ̺ ≤ 1).

Any translation-invariant stationary distribution is a mixture of Bernoullis.
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Hydrodynamics (briefly)

Let T and X be some large-scale time and space parameters.

 Set initially ̺ = ̺(T = 0, X) to be the density at position x = X/ε.

(Changes on the large scale.)

 ̺(T , X) is the density of particles after a long time t = T/ε at

position x = X/ε. It satisfies, with a := p − q,

∂

∂T
̺ +

∂

∂X
a[̺(1 − ̺)] = 0 (inviscid Burgers)

∂

∂T
̺ + a[1 − 2̺] ·

∂

∂X
̺ = 0 (while smooth)

∂

∂T
̺ +

dX(T )

dT
·

∂

∂X
̺ =

d

dT
̺(T , X(T )) = 0

 The characteristic speed C(̺) := a[1 − 2̺].

(̺ is constant along Ẋ(t) = C(̺).)

26



Hydrodynamics (briefly)

Let T and X be some large-scale time and space parameters.

 Set initially ̺ = ̺(T = 0, X) to be the density at position x = X/ε.

(Changes on the large scale.)

 ̺(T , X) is the density of particles after a long time t = T/ε at

position x = X/ε. It satisfies, with a := p − q,

∂

∂T
̺ +

∂

∂X
a[̺(1 − ̺)] = 0 (inviscid Burgers)

∂

∂T
̺ + a[1 − 2̺] ·

∂

∂X
̺ = 0 (while smooth)

∂

∂T
̺ +

dX(T )

dT
·

∂

∂X
̺ =

d

dT
̺(T , X(T )) = 0

 The characteristic speed C(̺) := a[1 − 2̺].

(̺ is constant along Ẋ(t) = C(̺).)
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28



Hydrodynamics (briefly)

Let T and X be some large-scale time and space parameters.

 Set initially ̺ = ̺(T = 0, X) to be the density at position x = X/ε.

(Changes on the large scale.)

 ̺(T , X) is the density of particles after a long time t = T/ε at

position x = X/ε. It satisfies, with a := p − q,

∂

∂T
̺ +

∂

∂X
a[̺(1 − ̺)] = 0 (inviscid Burgers)

∂

∂T
̺ + a[1 − 2̺] ·

∂

∂X
̺= 0 (while smooth)

∂

∂T
̺ +

dX(T )

dT
·

∂

∂X
̺ =

d

dT
̺(T , X(T )) = 0

 The characteristic speed C(̺) := a[1 − 2̺].

(̺ is constant along Ẋ(t) = C(̺).)
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2. ASEP: Surface growth

-
x

◦ ◦ • • • ◦ ◦•
-3 -2 -1 0 1 2 3 4

hx(t) = height of the surface above x.
hx(t) − hx(0) = net number of particles passed above x.
hV t(t) = net number of particles passed through the moving window
at V t (V ∈ R).
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3. Growth fluctuations

-

6

x
t = 0

h t

0

0

Ferrari - Fontes 1994: lim
t→∞

Var(hV t(t))
t = const · |V − C(̺)|

 Initial fluctuations are transported along the characteristics.

 How about V = C(̺)?
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3. Growth fluctuations

Conjecture:

lim
t→∞

Var(hC(̺)t(t))

t2/3
= [sg. non trivial].

Theorem (B., Seppäläinen): For any 0 < ̺ < 1, and any q < p,

0 < lim inf
t→∞

Var(hC(̺)t(t))

t2/3

≤ lim sup
t→∞

Var(hC(̺)t(t))

t2/3
< ∞.

Corollary: The corresponding scaling of the diffusivity is also proved.
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3. Growth fluctuations

Limit distributions (not yet controlling the second moment) in terms

of the Tracy-Widom distribution (GUE random matrices) were found by

Baik, Deift and Johansson 1999, Johansson 2000, and Ferrari and

Spohn 2006 for the totally asymmetric exclusion (TASEP: p = 1, q =

0).

Method was: Last passage percolation, heavy combinatorics and a-

symptotic analysis.

 We needed to get rid of these tools. Premises: Cator and Groene-

boom 2006 (Hammersley’s process), B., Cator and Seppäläinen 2006

(TASEP, last passage).
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4. The second class particle

-
x

◦

•
�

�

�




↑
-3 -2 -1 0 1 2 3 4

Bernoulli(̺) distribution

Coupling: A single discrepancy is always conserved = the second class

particle. Its location at time t is Q(t).

The second class particle is a highly nontrivial object. For example,

the Bernoulli(̺) distribution is not stationary as seen by the second

class particle.
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4. The second class particle

Theorem:

E(Q(t)) = C(̺)t

(characteristic speed), and

Var(hV t(t)) = const · E|V t − Q(t)|.

Method of proof: martingale arguments, time-reversal, and conser-

vation of particles.

The proof is based on ideas of Bálint Tóth, he said these ideas were standard.
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Main idea for prooving t1/3 scaling:

Deviations of Q(t) Deviations of hC(̺)(t)

Couplings

The above thm.

89



The coupling measure

Let λ < ̺, and

µ
(
◦
◦

)
= 1 − ̺, µ

(
•
◦

)
= ̺ − λ, µ

(
•
•

)
= λ.

Then the “upper” marginal is Bernoulli(̺), and the “lower” marginal

is Bernoulli(λ).
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According to the product of µ’s:
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�

�

�
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↑ ↑

-3 -2 -1 0 1 2 3 4

hV t(t) − hV t(t) = the net number of ↑’s passed through the moving

window at V t (V ∈ R).
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5. The upper bound

-
x

̺

↑

Connect Q(t) with the ↑’s (this needs nontrivial couplings):

P{Q(t) is too large} ≤ P{too many ↑’s have crossed C(̺)t}

≤ P{hC(̺)t(t) − hC(̺)t(t) is too large(λ)}.

Optimize “too large(λ)” in λ, use Chebyshev’s inequality and relate

Var(hC(̺)t(t)) to Var(hC(̺)t(t)).
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The computations result in (remember E(Q(t)) = C(̺)t)

P{Q(t) − C(̺)t ≥ u}
Thm
≤ c ·

t2

u4
·Var(hC(̺)t(t))

Thm
= c ·

t2

u4
· E|Q(t) − C(̺)t|.

With

Q̃(t) := Q(t) − C(̺)t and E := E|Q̃(t)|,

we have (with a similar lower deviation bound)

P{|Q̃(t)| > u} ≤ c ·
t2

u4
· E.

Claim: this already implies the t2/3 upper bound:
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We had P{|Q̃(t)| > u} ≤ c · t2

u4 · E.

E = E|Q̃(t)| =
∫ ∞

0
P{|Q̃(t)| > u} du

= E
∫ ∞

0
P{|Q̃(t)| > vE} dv

≤ E
∫ ∞

1/2
P{|Q̃(t)| > vE} dv +

1

2
E

≤ c ·
t2

E2
+

1

2
E,

that is, E3 ≤ c · t2.

Var(hC(̺)t(t))
Thm
= const. · E|Q(t) − C(̺)t|

Thm
= const. · E ≤ c · t2/3.
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6. The lower bound

-
x

0

λ

Let Qa(0) = a < 0. If Qa(t) ≤ C(̺)t, then the ↑’s have not crossed

the path C(̺)t from left to right:

P{Qa(t) ≤ C(̺)t} ≤ P{hC(̺)t(t) < hC(̺)t(t)}.

Therefore:

1 ≤ P{Qa(t) > C(̺)t} + P{hC(̺)t(t) < hC(̺)t(t)}.
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-
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↑↑ ↑ ↑ ↑ ↑

1 ≤ P{Qa(t) > C(̺)t} + P{hC(̺)t(t) < hC(̺)t(t)}

 Set a so that E(Qa(t)) < C(̺)t,

 E(hC(̺)t(t)) − E(hC(̺)t(t)) ∼ t(̺ − λ)2 > 0 would be the case, if ζ

was Bernoulli(̺) distributed. Instead, E(hC(̺)t(t)) will have a harmless

Radon-Nikodym factor.

⇒ Both probabilities are deviation probabilities.
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1 ≤ P{Qa(t) > C(̺)t} + P{hC(̺)t(t) < hC(̺)t(t)}.

Apply Markov’s inequality on the first, Chebyshev’s on the second

probability (use again the connection between Var(hC(̺)t(t)) and Var(hC(̺)t(t))).

The correct scaling of the parameters is: ̺ − λ ∼ t−1/3, a ∼ −t2/3.

In this case

1
Thm
≤ c1 ·

E(|Q̃a(t)|)

t2/3
+ c2 ·

Var(hC(̺)t(t))

t2/3

Thm
= c ·

Var(hC(̺)t(t))

t2/3
.
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7. Open questions

E|Q̃(t)|4? E|h̃C(̺)t(t)|
5?

E|Q̃(t)|3−ε E|h̃C(̺)t(t)|
4?

E|Q̃(t)|2 E|h̃C(̺)t(t)|
3?

E|Q̃(t)|1 E|h̃C(̺)t(t)|
2-�
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7. Open questions

→ What is the limit lim
t→∞

Var(hC(̺)t(t))

t2/3 = ? What does it have to do

with Gaussian random matrices? (Difficult.)

→ Other processes (zero range, Bricklayers’, ...)?

→ Some processes (e.g. symmetric simple exclusion, linear rate zero

range) show t1/4 scaling (with Gaussian limits), rather than t1/3. Where

is the borderline? Are there other scalings as well?
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Thank you.
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