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1. ASEP: Interacting particles

Bernoulli(o) distribution
Particles try to jump

to the right with rate p,
to the left with rate g =1 — p < p.

The jump is suppressed if the destination site is occupied by another
particle.

The Bernoulli(o) distribution is time-stationary for any ( ).
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Hydrodynamics (briefly)

Let 7" and X be some large-scale time and space parameters.

~ Set initially o = o(7T" = 0, X)) to be the density at position x = X /e.

(Changes on the large scale.)

~ o(T', X)) is the density of particles after a long time ¢t = T /e at

position z = X /e. It satisfies, with a :=p —q,

(9% + 6%&[ (1 —0)] =0 (inviscid Burgers)
8% + al[l — 20] - GiX = 0 (while smooth)
9 dxX(T) 8 d
. : =—o(7, X(1T)) =20
oT t dT 90X d7 (7 X))

~ The characteristic speed C(p) : = a[l — 20].
(0 is constant along X(T) = C(p).)
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h.(t) = height of the surface above =z.

hz(t) — hz:(0) = net number of particles passed above .

hy+(t) = net number of particles passed through the moving window
at Vit (V eR).
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h,t

L -

. t=20
0 T
Ferrari - Fontes 1994: tlim Var(};‘/t(t)) = const - |V — C'(o)|
— 00

~» Initial fluctuations are transported along the characteristics.
~ How about V = C(p)7
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3. Growth fluctuations

Conjecture:

im Var(hc(g)t(t))

Jim 23 = [sg. non triviall.

Theorem ( ). For any , and any g < p,

o Var(hen®)

0< |Itrllolgf 2/3
_ Var(hc(g>t(t))

= H?Ligp t2/3

< Q.

Corollary: The corresponding scaling of the diffusivity is also proved.
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Limit distributions (not yet controlling the second moment) in terms
of the Tracy-Widom distribution ( ) were found by
Baik, Deift and Johansson 1999, Johansson 2000, and Ferrari and
Spohn 2006 for the totally asymmetric exclusion (TASEP: p =1, ¢ =
0).

Method was: Last passage percolation, heavy combinatorics and a-
symptotic analysis.

~~ We needed to get rid of these tools. Premises: Cator and Groene-
boom 2006 (Hammersley's process), B., Cator and Seppadlainen 2006
(TASEP, last passage).
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4. The second class particle

Bernoulli(p) distribution except for 0

Coupling: A single discrepancy is always conserved — the second class
particle. Its location at time t is Q(1).

The second class particle is a highly nontrivial object. For example,
the Bernoulli(p) distribution is not stationary as seen by the second

class particle.
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4. The second class particle

E(Q(1)) = C(o)t
( ), and

Var(hy(t)) = const - E|Vt — Q(t)].

martingale arguments, time-reversal, and conser-
vation of particles.

The proof is based on ideas of Balint Toth, he said these ideas were standard.
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Main idea for prooving t1/3 scaling:

TN

Deviations of Q(t) Deviations of hC’(g)(t)

~_ -
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The coupling measure

Let A\ < o, and

(=10 W) =0n )=

Then the “upper” marginal is Bernoulli(o), and the “lower” marginal
is Bernoulli()).
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5. The upper bound

0

A T

j I

Connect Q(t) with the 7's ( ):
P{Q(t) is too large} < P{too many |'s have crossed C(p)t}
< P{hC(Q)t(t) — he( o) (1) is too large(\)}.
Optimize “too large(\)” in A, use Chebyshev's inequality and relate
Var(hc(g)t(t)) to Var(hc(g)t(t)).

124



The computations result in

2
P{Q() — C(@t > u} < e+ g Var(ho(p(®)

125



The computations result in ( Q1) )

2
P{Q() — C(@t > u} < e+ g Var(ho(p(®)

126



The computations result in ( Q1) )
2
P{Q(t) - C(a)t > u} < c-—5-Var(hgy (D)
u
2
u?

- E|Q() — C(o)t]

pu— C -
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2
P{Q() — C(@t > u} < e+ g Var(ho(p(®)
2
= 5 ElQ() - (o),
With
Q) :=Q(t)—C(e)t  and  E:=E|Q(1)],
we have ( )

2
P{OW)| > u} <c-—y - E.
u

Claim: this already implies the t2/3 upper bound:
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- 2
We had P{|Q(t)| > u} <c-i7-E.
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- 2
We had P{|Q(t)| > u} <c-i7-E.

E=EIQW)| = [ P{QW)] > u} du
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- 2
We had P{|Q(t)| > u} <c-i7-E.

E=EIQW)| = [ P{QW)] > u} du

— E/OOO P{O(1)| > vE} dv
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- 2
We had P{|Q(t)| > u} <c-i7-E.

E=EIQW)| = [ P{QW)] > u} du
— E/OOO P{O(1)| > vE} dv

o 1
<E o P{lQ(1)| > vE} dv+ 2
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- 2
We had P{|Q(t)| > u} <c-i7-E.

E=EIQW)| = [ P{QW)] > u} du
— E/OOO P{|O(1)] > vE} dv

00 N 1
< K P t El d —F
<E ) {1Q(t)| > vE} v+2
< t2—|—1E

C.— I
_= E2 2 b

that is, E3 < c-t2.
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- 2
We had P{|Q(t)| > u} <c-i7-E.

E=EIQW)| = [ P{QW)] > u} du
— E/OOO P{|O(1)] > vE} dv

00 N 1
<E Lo P{|Q(t)| > vE} dv + 5E
C Py
_= E2 2 b
that is, E3 < c-t2.

Var(hc(g)t(t)) = const. - E|Q(t) — C(o)t]
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- 2
We had P{|Q(t)| > u} <c-i7-E.

E=EIQW)| = [ P{QW)] > u} du
— E/O P{|Q(t)| > vE} dv

<E [T P{OW®)| > vE} dv+ %E

1
<c ——+4+-FE

that is, E3 < c-t2.

Var(hc(g)t(t)) = const. - E|Q(t) — C(o)t]

— const.-E < ¢-t2/3, -
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6. The lower bound
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6. The lower bound

Let Q%(0) = a < O.
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6. The lower bound

¢
A
A |_\—\—
Y
T TT: : T 7 T
a 0] *

Let Q%(0) = a < 0. If Q%) < C(p)t, then the |'s have not crossed
the path C(p)t from left to right:

P{Q“(1) < C(o)t} < P{ho(p)e(t) < heo) (D)}
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6. The lower bound

¢
A
A |_\—\—
0
T TT{ : T 7 T
a 0] T

Let Q%(0) = a < 0. If Q%) < C(p)t, then the |'s have not crossed
the path C(p)t from left to right:

P{Q“(1) < C(o)t} < P{ho(p)e(t) < heo) (D)}
T herefore:

1 <P{Q“(1) > C(o)t} + P{hcp)(t) <he(p (B}
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1 < P{Q (1) > C(o)t} + Plheon(®) < he(y (D))
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1 < P{Q (1) > C(o)t} + Plheon(®) < he(y (D))

~ Set a so that E(Q%(t)) < C(p)t,
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1 < P{Q (1) > C(o)t} + Plheon(®) < he(y (D))

~ Set a so that E(Q%(t)) < C(p)t,

v E(ho)i(®) —E(hc(,) (1) ~ t(e — A)? > 0 would be the case, if ¢
was Bernoulli(p) distributed.
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1 < P{Q (1) > C(o)t} + Plheon(®) < he(y (D))

~ Set a so that E(Q%(t)) < C(p)t,
v E(ho)i(®) —E(hc(,) (1) ~ t(e — A)? > 0 would be the case, if ¢

was Bernoulli(p) distributed. Instead, E(hC(Q)t(t)) will have a harmless
Radon-Nikodym factor.
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1 < P{Q (1) > C(o)t} + Plheon(®) < he(y (D))

~ Set a so that E(Q%(t)) < C(p)t,

v E(ho)i(®) —E(hc(,) (1) ~ t(e — A)? > 0 would be the case, if ¢
was Bernoulli(p) distributed. Instead, E(hC(Q)t(t)) will have a harmless
Radon-Nikodym factor.

= Both probabilities are deviation probabilities.
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1 < P{Q (1) > C(0)t} + P{hepu(®) < he(p (D}
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1 <P{Q(1) > C()t} + Pl{hc(p)(t) < hegp) (D)}

Apply Markov’s inequality on the first, Chebyshev's on the second
probability ( Var(he (1)) Var(hep: (1)) -
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1 <P{Q(1) > C()t} + Pl{hc(p)(t) < hegp) (D)}

Apply Markov’s inequality on the first, Chebyshev's on the second
probability ( Var(he (1)) Var(hep: (1)) -

The correct scaling of the parameters is: o — A ~t"1/3, g~ —#2/3,
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1 <P{Q(1) > C()t} + Pl{hc(p)(t) < hegp) (D)}

Apply Markov’s inequality on the first, Chebyshev's on the second
probability ( Var(he (1)) Var(hep: (1)) -

The correct scaling of the parameters is: o — A ~t"1/3, g~ —#2/3,
In this case

E(|Q%(t)]) n Var(he(p)(t))
T 12/3 €2 :2/3

1 <
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1 <P{Q(1) > C()t} + Pl{hc(p)(t) < hegp) (D)}

Apply Markov’s inequality on the first, Chebyshev's on the second
probability ( Var(he (1)) Var(hep: (1)) -

The correct scaling of the parameters is: o — A ~t"1/3, g~ —#2/3,
In this case

E(|Q%(t)]) Var(he(p)(t))
1 < Cc1 - t2/3 + c2 - t2/§
| Var(hC(Q)t(t))

- ° +2/3
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7. Open questions

E|Q(t)|!

E|h¢ (o) ()2
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7. Open questions

E|Q(1)|?

E|Q()|!

E|h¢ (o) ()2
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7. Open questions

E|Q(t)]3~¢

|

E|Q(1)|?

|

E|Q()|!

E|h¢ (o) ()2
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7. Open questions

E|Q(1)|*?

E|Q(t)]3~¢

|

E|Q(1)|?

|

E|Q()|!

E|h¢ (o) ()2
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7. Open questions

BlQ@[*? - Blhe(ei 77
E|C~2(7:‘)|3_€ R E|7LC(Q;t(t)|4?
| |
EQ®)|?] - - E|7LC(g)t(t)|3?
l .
ElQ()[Y| —— |Elhg(p):(®)I?
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7. Open questions

Var(h t
— What is the limit_lim o) — 7 what does it have to do
— 00
with Gaussian random matrices? ( )

157



7. Open questions

Var(h t
— What is the limit_lim o) — 7 what does it have to do
— 00
with Gaussian random matrices? ( )

— Other processes (zero range, Bricklayers’, ...)7
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7. Open questions

Var(h t
— What is the limit_lim o) — 7 what does it have to do
— 00
with Gaussian random matrices? ( )

— Other processes (zero range, Bricklayers’, ...)7

— Some processes (e.g. symmetric simple exclusion, linear rate zero
range) show t1/4 scaling ( ), rather than t1/3. Where
is the borderline? Are there other scalings as well?
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Thank you.
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