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2.1 Parametric Models

Parametric Family

When X is a continuous variable and the population size is large, there may be a probability density
functionfX(x) which gives reasonable, if idealised, model of the relativefrequency of each possible
X value in the population. We callX thepopulation random variable and callfX(x) the population
pdf (or callpX(x) the population pmf ifX is discrete).

Although we do not know the population distribution, we often have theory, experience or data leading
us to believe a certaintype of probability density function is appropriate for the population for the
particular problem we are considering. For example, we may have good reason theoretical reasons
to believe the distibution of lifetimes in an overall population of lightbulbs follows an Exponential(θ)
distribution but be unsure of the value ofθ for this population – or we may have good reason based
on past experience to believe the debt of individual students in a population follows a Normal(µ, σ2)
distribution but be unsure of the values ofµ andσ for this population – or inspection of the data may
lead us to believe the earthquake times in Example 1.7 come from an Exponential(θ) distribution and
the Newcomb times in Example 1.8 come from a Normal(µ, σ2) distribution, but we may be unsure
of the values of the population parameterθ and the population parametersµ andσ2.

• We use the termparametric family to describe a collection of distributions that are all of the
same type and differ only in the value of one (or more) parameter, sayθ.

• We writefX(x; θ) for the pdf in the parametric family corresponding to the parameterθ and,
for example,E(X; θ) for the mean of the corresponding distribution.

Standard Parametric Families

A summary sheet of parametric families and graphs comparingprobability density functions are in-
cluded in this handout. The sheet includes descriptions of some standard families for discrete random
variables:
– Bernoulli(θ), Binomial(K,θ), Geometric(θ) and Poisson(θ)
and continuous random variables:
– Uniform(0,θ), Exponential(θ), Gamma(α, β) and Normal(µ, σ2)
These are not the only parametric families, and we may also meet other parametric families such
as the Lognormal, the Pareto and the Weibull families which,for example, can often provide better
models of skewed data populations.

Estimation for Parametric Families

Although the original ‘quantity of interest’ will not necessarily correspond toθ itself, it must be a
function of θ, sayτ(θ), for which we can usually derive an expression. Once we have calculated a
representative value (orestimate) for θ, we can estimate the original quantity of interest, for example
by plugging the estimate forθ into the expressionτ(θ). Thus, for data from a parametric family, the
problem of estimating a given quantity of interest reduces to using the sample values to estimate the
unknown value of the parameterθ specifying the population distribution.
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Simple Random Sample from a Parametric Family

• WhenX1, . . . , Xn aren independent, identically distributed random variables, each with
the same distribution as the population random variableX, we sayX1, . . . , Xn is a simple
random sample of sizen from the population.

For j = 1, . . . , n, letXj denote the value that will be associated with thejth member of the sample,
numbered in the order in which the sample members are chosen.Assume the sample is chosen in such
a way that each population member is equally likely to be included in the sample, independently of the
other sample members. Then the valueXj will have the same distribution as the overall distribution
of the values in the population and will also be independent of the values associated with the other
members of the sample. Thus, when the population distribution is in a given parametric family, the
data valuesx1, . . . , xn can be modelled as the observed values of random variablesX1, . . . , Xn, where
the setX1, . . . , Xn is a simple random sample of sizen from a population with distributionf(x; θ).

For simple random samples, we have seen that the data values are representative of the values in the
population as a whole, in the sense that, on average, different values occur in the sample in the same
proportion as they occur in the population. Thus we can use the data values from the (possibly small)
sample to make inferences about the values in the populationas a whole.

Note that ifX1, . . . , Xn is a simple random sample from a distribution in a parametricfamily, then:

X1, . . . , Xn are independent random variables, so their joint probability density function factorises
as the product of the marginal probability density functions, i.e.
fX1,...,Xn

(x1, . . . , xn; θ) = fX1
(x1; θ)fX2

(x2; θ) · · · fXn
(xn; θ)

X1, . . . , Xn are identically distributed with the same distribution asX, so each of these marginal
probability density functions has the same form as the probability density function forX, i.e.
fX1

(x1; θ)fX2
(x2; θ) · · · fXn

(xn; θ) = fX(x1; θ)fX(x2; θ) · · · fX(xn; θ)

• Thus, for a simple random sample from a distribution in a parametric family,

fX1,...,Xn
(x1, . . . , xn; θ) = fX(x1; θ)fX(x2; θ) · · · fX(xn; θ) =

n
∏

i=1

fX(xi; θ)

2.2 Standard Parametric Model Assumptions

From Chapter 2 onwards, at the start each problem we will assume that an appropriate parametric
family has been identified and start our analysis of the problem with parametric model assumptions
of the following form:

• The sample data valuesx1, . . . , xn are the observed values of a simple random sample of sizen
from a distribution in a given parametric family, which has probability density functionf(x; θ)
(or probability mass functionp(x; θ) if discrete) – either with a single unknown parameterθ, or
more generally withk unknown parameters.
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Parametric Families Summary Sheet

Family Parameter values pmf or pdf X values Mean Variance

Bernoulli(θ) 0 < θ < 1 pX(x; θ) = θx(1 − θ)1−x x = 0, 1 E(X; θ) = θ Var(X; θ) = θ(1 − θ)

Binomial(K, θ) 0 < θ < 1 (K known) pX(x; θ) =

(

K
x

)

θx(1 − θ)K−x x = 0, 1, . . . , K E(X; θ) = Kθ Var(X; θ) = Kθ(1 − θ)

Geometric(θ) 0 < θ < 1 pX(x; θ) = θ(1 − θ)x−1 x = 1, 2, . . . E(X; θ) =
1

θ
Var(X; θ) =

1 − θ

θ2

Poisson(θ) 0 < θ < ∞ pX(x; θ) = e−θ θx

x!
x = 0, 1, 2, . . . E(X; θ) = θ Var(X; θ) = θ

Uniform(0, θ) θ > 0 fX(x; θ) = 1/θ 0 < x < θ E(X; θ) =
θ

2
Var(X; θ) =

θ2

12

Exponential(θ) θ > 0 fX(x; θ) = θe−θx x > 0 E(X; θ) =
1

θ
Var(X; θ) =

1

θ2

Gamma(α, λ) α > 0, λ > 0 fX(x; α, λ) =
λαxα−1e−λx

Γ(α)
x > 0 E(X; α, λ) =

α

λ
Var(X; α, λ) =

α

λ2

Normal(µ, σ2) −∞ < µ < ∞, σ2 > 0 fX(x; µ, σ2) =
1

√
2πσ2

e−(x−µ)2/2σ2

−∞ < x < ∞ E(X; µ, σ2) = µ Var(X; µ, σ2) = σ2
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2.9 Assessing Fit

Say we have

• a data set ofn valuesx1, . . . , xn

• assumed to be a random sample from a population whose distribution function and pdf have the
parametric formsFX(x; θ) andfX(x; θ) respectively

• and an estimatêθ = θ̂(x1, . . . , xn) calculated from the data.

At this stage, it is good practice to assess how well our assumed model fits the actual data by compar-
ing the observationsx1, . . . , xn with the values we might expect if we took a random sample fromthe
distributionFX(x; θ̂). If the actual observations show striking or systematic differences from what we
would expect, then it may be a sign that our assumed model is not appropriate for this set of data.

One way of assessing fit is to use fact that if our modelFX(x; θ̂) is correct, then – on average – the
observations are likely to be equally spaced out according to this distribution, i.e. then sample values
should – on average – split the range ofX values (which has probability 1) inton + 1 intervals each
of which contains1/(n+ 1)th of this total probability.

Examples showing the expected values of the order statistics for a simple random sample of size
n = 4 for two different types of parametric family; N(0,1) on the left and Exp(1) on the right. The
values split each range into 5 intervals such that the area under the pdf above each interval is 1/5:
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Let x(1), . . . , x(n) be the ordered observations, i.e. the observed order statistics for the data set. Then,
if the modelFX(x; θ) is correct, we would on average expect these values to satisfy

FX(x(1); θ̂) ≃ 1/(n+ 1)

FX(x(2); θ̂)− FX(x(1); θ̂) ≃ 1/(n+ 1)

· · ·

FX(x(n); θ̂)− FX(x(n−1); θ̂) ≃ 1/(n+ 1)



















FX(x(1); θ̂) ≃ 1/(n+ 1)

FX(x(2); θ̂) ≃ 2/(n+ 1)

giving · · ·

FX(x(n); θ̂) ≃ n/(n+ 1)

so that

FX(x(k); θ̂) ≃
k

n+ 1
or equivalently x(k) ≃ F−1

X

(

k

n+ 1
; θ̂

)

for k = 1, . . . , n,

whereF−1
X denotes the inverse ofFX (not the reciprocal1/FX).
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2.10 Quantile (Q-Q) plots and Probability (P-P) plots

For a given value ofn, and a given distributionFX(x), we will call then valuesF−1
X (k/(n+1)), k =

1, . . . , n, that split the distribution into roughly equal parts thequantiles of the distribution. Similarly
then ordered sample valuesx(1), . . . , x(n) that split the sample into roughly equal parts are called the
sample quantiles.

The discussion above leads to two simple graphical methods,quantile plots and probability plots, for
assessing the fit of a model. Note that some authors use the term ’probability plots’ for both methods.

Quantile plot

For this you must have an analytic or numerical method methodfor computing values ofF−1
X (x; θ)

(e.g. usingR). The procedure is as follows:

1. Compute an estimatêθ for θ (e.g. the method of moments estimate).

2. Order the observations to obtain the order statistics (i.e. the sample quantiles)x(1), . . . , x(n).

3. Fork = 1, . . . , n, computeF−1
X (k/(n+ 1); θ̂). These are the fitted quantile values

(i.e. the values we would expect for the quantiles if the model was correct).

4. Fork = 1, . . . , n, plot the pairs(F−1
X (k/(n+ 1); θ̂), x(k)).

5. Add the liney = x to the plot (i.e. the line through the origin with slope 1).

If the points show only minor, random deviations from the line, then there is no reason to reject the
model. If there are striking or systematic deviations from the line, then this may be evidence that the
model is incorrect.

Probability plot

This proceeds in a similar way to a quantile plot, except thatyou now need to be able to compute
values ofFX(x; θ), and you plot the values of the sample probabilitiesFX(x(k); θ̂) against the expected
valuesk/(n+ 1), k = 1, . . . , n.

Quantile and Probability plots in R

These plots are easy to produce inR for the standard families of distributions. Consider a family called
name with probability density functionf(x; θ) and distribution functionF (x; θ) which depend on a
parameterθ. Then, for given numerical values ofx andθ, we can use theR functions

• dname(x, θ) - which returns the value of the densityf(x; θ)

• pname(x, θ) - which returns the value of the probabilityF (x; θ) = P (X ≤ x; θ)

• qname(x, θ) - which returns the value of the quantileF−1(x; θ)

For more information on exactly what parameters need to be specified for each distribution, use the
help facility in R - for example try typinghelp(dexp), help(dunif), help(dgamma) or
help(dnorm).
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2.11 Example – Earthquakes

Thequakes data set in section 1 records the 62 times between successiveserious earthquakes. Often
such times will be well modelled by an Exponential distribution with parameterθ. Write θ̂ for the
method of moments estimatêθmom. We have seen earlier that for this modelθ̂ = 1/m1 = 1/x̄.

The following R commands implement the procedure above for computing a quantile plot (or Q-Q
plot) when the observations are thought to come from a distribution following an Exp(θ) model. Do
not type the comments after the # character, or the # character itself!! Note that to access the data you
may first need to type
load(url("http://www.maths.bris.ac.uk/%7Emapjg/Teach/Stats1/stats1.RData")).

> m1 <- mean(quakes) # these commands compute the sample mean

> theta <- 1/m1 # and from it compute the mom estimate

> quakes.ord <- sort(quakes) # this computes a vector of ordered sample obsns

> quant <- seq(1:62)/63 # computes a vector of values k/(n+1) n=62;k=1,

> quakes.fit <- qexp(quant,theta)# . . . ,62 and from it the fitted quantile values

> plot(quakes.fit, quakes.ord, # this plots fitted quantiles vs. observed quantiles

+ ylab="Sample quantiles", # and adds axes labels and main title

+ xlab="Quantiles of fitted distribution",

+ main="Title - id")

> abline(0,1) # this adds a line, intercept 0, slope 1, to the plot

The Q–Q plot of the sample quantiles against the quantiles ofthe fitted model is shown below, together
with a corresponding plot of the probabilities. Although the points do not lie exactly on a straight line,
there does not appear to be any significant systematic deviation from the liney = x, and no substantial
reason to reject the Exponential model.

0 500 1000 1500

0
50

0
10

00
15

00

Quakes quantile plot  − mapjg

Quantiles of fitted distribution

S
am

pl
e 

qu
an

til
es

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Quakes probability plot  − mapjg

Probabilities for fitted distribution

S
am

pl
e 

pr
ob

ab
ili

tie
s

7



2.12 Interpreting Quantile Plots

The plots below show a range of different ways in which the sample data may differ systematically
from the predictions of the fitted model. They are based on a sample of sizen = 1000.

(a) Here the sample actually comes from the fitted model. As expected, we see the points lying fairly
well along the line.

(b) Here the sample is from a distribution with longer left and right tails than the fitted model. What
we see is that the sample quantiles at each end are much more spread out than one would expect if the
model was correct, so they are smaller at the left-hand end and larger at the right-hand end than the
corresponding expected quantiles for the fitted distribution, and this shows up clearly in shape of the
plot.

(c) Here the sample is from a distribution with shorter left and right tails than the fitted model. What
we see is that the sample quantiles at each end are much less spread out than one would expect if the
model was correct, so they are larger at the left-hand end andsmaller at the right-hand end than the
corresponding expected quantiles for the fitted distribution, and again this shows up clearly in shape
of the plot.

(d) Here the sample is from a distribution which correspondsto a random variable which is a loca-
tion/scale mapping (X 7→ aX+ b) of that specified by the fitted model. What we see is that this linear
transformation does not affect the fit to a straight line, butit does affect the slope and intercept of the
line of fit.

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

Expected quantiles

S
an

pl
e 

qu
an

til
es

(a) Obsns fit model distribution
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(b) Observations have longer tails
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(c) Observations have shorter tails
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(d) Obsns fit linear transformation
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