MATH11400 Statistics 1 2010-11

Homepage http://www.stats.bris.ac.uk/%7Emapjg/Teach/Stats1/intro.html

2.1 Parametric Models

Parametric Family

When X is a continuous variable and the population size i®ldtiere may be a probability density
function fx (x) which gives reasonable, if idealised, model of the reldtigquency of each possible
X value in the population. We cal the population random variable and callfx (x) the population
pdf (or callpx (x) the population pmf ifX is discrete).

Although we do not know the population distribution, we afteave theory, experience or data leading
us to believe a certaitype of probability density function is appropriate for the ptadion for the
particular problem we are considering. For example, we nae f[yood reason theoretical reasons
to believe the distibution of lifetimes in an overall poptiga of lightbulbs follows an Exponential)
distribution but be unsure of the value éfor this population — or we may have good reason based
on past experience to believe the debt of individual stuglEna population follows a Normal(o?)
distribution but be unsure of the valuesiondo for this population — or inspection of the data may
lead us to believe the earthquake times in Example 1.7 coone dn Exponentiall) distribution and

the Newcomb times in Example 1.8 come from a Normai¢) distribution, but we may be unsure
of the values of the population paramefieand the population parameterando?.

e We use the ternparametric family to describe a collection of distributions that are all of the
same type and differ only in the value of one (or more) paramsayy.

o We write fx (z; #) for the pdf in the parametric family corresponding to thegpageterd and,
for example E(X; 6) for the mean of the corresponding distribution.

Standard Parametric Families

A summary sheet of parametric families and graphs compamialgability density functions are in-
cluded in this handout. The sheet includes descriptionsmsstandard families for discrete random
variables:

— Bernoullip), Binomial(K,0), Geometric§) and Poissori)

and continuous random variables:

— Uniform(0f), Exponentialg), Gammag, 3) and Normalf:, o?)

These are not the only parametric families, and we may alset wter parametric families such
as the Lognormal, the Pareto and the Weibull families whichgxample, can often provide better
models of skewed data populations.

Estimation for Parametric Families

Although the original ‘quantity of interest’ will not necsaxrily correspond td itself, it must be a
function of#, sayr(#), for which we can usually derive an expression. Once we hal@iated a
representative value (estimate) for 6, we can estimate the original quantity of interest, for egkem
by plugging the estimate fatinto the expression(6). Thus, for data from a parametric family, the
problem of estimating a given quantity of interest reducessing the sample values to estimate the
unknown value of the parametérspecifying the population distribution.

1



Simple Random Sample from a Parametric Family

e When X1, ..., X, aren independent, identically distributed random variables;hewith
the same distribution as the population random varidbleve say Xy, ..., X,, is asmple
random sample of sizen from the population.

Forj =1,...,n, let X; denote the value that will be associated with flemember of the sample,
numbered in the order in which the sample members are chAssnme the sample is chosen in such
a way that each population member is equally likely to beudetl in the sample, independently of the
other sample members. Then the vaKiewill have the same distribution as the overall distribution
of the values in the population and will also be independénhe values associated with the other
members of the sample. Thus, when the population distabus in a given parametric family, the
datavalues;, ..., z, can be modelled as the observed values of random variables. , X,,, where
the setXy, ..., X, is a simple random sample of sizédrom a population with distributiorf(x; 6).

For simple random samples, we have seen that the data vakiespaesentative of the values in the
population as a whole, in the sense that, on average, diffgedues occur in the sample in the same
proportion as they occur in the population. Thus we can useéata values from the (possibly small)
sample to make inferences about the values in the populasi@anwhole.

Note that if X1, ..., X,, is a simple random sample from a distribution in a paraméraly, then:

Xi,...,X, are independent random variables, so their joint proligiltignsity function factorises
as the product of the marginal probability density funcsiare.
Ixixa (@1, 203 0) =[xy (2150) [x, (225 0) -+ fx,, (20 0)

X4,..., X, are identically distributed with the same distribution)asso each of these marginal
probability density functions has the same form as the gitibadensity function forX, i.e.

Ix (2150) fx, (22:0) - -+ fx, (xn;0) = fx(2150) fx(22;0) - - fx(2,;0)

e Thus, for a simple random sample from a distribution in a eataic family,

Fara (@1, @0 0) = fx(@1;0) fx(w;0) -+ fxc(wn;0) = [ [ Fx(i;0)

2.2 Standard Parametric Model Assumptions

From Chapter 2 onwards, at the start each problem we will assiat an appropriate parametric
family has been identified and start our analysis of the mblvith parametric model assumptions
of the following form:

e The sample data values, .. ., z,, are the observed values of a simple random sample ofisize
from a distribution in a given parametric family, which hasipability density functiory (z; 6)
(or probability mass functiop(z; 0) if discrete) — either with a single unknown parameteor
more generally withk unknown parameters.



Parametric Families Summary Sheet

Family Parameter values pmf or pdf X values Mean Variance
Bernoulli(#) 0<f<1 px(z;0) =6°(1 —6)—* r=0,1 E(X;0) =146 Var(X;0) =6(1 —0)
Binomial(K,0) 0<6<1 (Kknown) | px(z;60) = ( f ) 0*(1—-0)K—= 2=0,1,...,K | E(X;0) = K6 Var(X;0) = KO(1—0)
. ) 1 1-6
Geometri¢d) 0<60<1 px(z;0) =60(1—0)" r=1,2, E(X;0) = 7 Var(X;0) = 7
Poissorid) 0<f<oo px(x;0) —6_6% r=0,1,2,... |E(X;0)=4¢6 Var(X;0) =40
: 7 6?
Uniform(0,0) 6 >0 fx(z;0)=1/6 O<z<¥ E(X;0) = 3 Var(X;0) = D
1 1
Exponentiald) 6 >0 Ix(z;0) = 0" x>0 E(X;0) = 7 Var(X;60) = 7
Gamma@,)) a>0, A>0 Pz = Al >0 E(X;o0 ) =S Var(X;a,\) = —
T, = T . — . -
) @ ) X4y Gy F(C() y &y A ) & 22
1
Normal,o?) —oco<p<oo, 02>0 e~ @=m?20" oo < < o0 E(X;u,0%) =pu Var(X;u,o?) = o?
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2.9 Assessing Fit

Say we have

e adata set of valueszy, ..., z,

e assumed to be a random sample from a population whose distrildunction and pdf have the
parametric formd’x (x; ) and fx (x; ) respectively

e and an estimaté = (1, . . ., z,,) calculated from the data.

At this stage, it is good practice to assess how well our asdunmodel fits the actual data by compar-
ing the observations,, .. ., z,, with the values we might expect if we took a random sample fitoen
distribution Fix (z; §). If the actual observations show striking or systematitedénces from what we
would expect, then it may be a sign that our assumed modet sppwopriate for this set of data.

One way of assessing fit is to use fact that if our made(x; é) is correct, then — on average — the
observations are likely to be equally spaced out accordinigi$ distribution, i.e. the sample values
should — on average — split the rangeXfvalues (which has probability 1) inte+ 1 intervals each
of which containd /(n + 1)th of this total probability.

Examples showing the expected values of the order statiftica simple random sample of size
n = 4 for two different types of parametric family; N(0,1) on theftland Exp(1) on the right. The
values split each range into 5 intervals such that the ardaruhe pdf above each interval is 1/5:

Letz(y,...,zq) bethe ordered observations, i.e. the observed ordertgtafisr the data set. Then,
if the modelFx (z; 0) is correct, we would on average expect these values toysatisf

Fx(zy;9) ~ 1/(n+1) Fx(za;0) =~ 1/(n+1)
Fx(x2);0) — Fx(za);0) ~ 1/(n+1) Fx(z@3;0) ~ 2/(n+1)
. giving .
Fx(zm);0) = Fx(z-1;0) ~ 1/(n+1) Fx(zm;t) ~ nf(n+1)
so that
Fx (2 0) ~ orequivalently g ~ Pt (—"—d) for k=1, ..n
X\ L (k) —n+1 q y (k) = £'x n+1a — Lyl

whereF ! denotes the inverse @ty (not the reciprocal / F).



2.10 Quantile (Q-Q) plots and Probability (P-P) plots

For a given value ofi, and a given distributio’ (), we will call then valuesFy ' (k/(n+1)), k =
1,...,n, that split the distribution into roughly equal parts thentiles of the distribution. Similarly
then ordered sample values,), . . ., z(, that split the sample into roughly equal parts are called the
sample quantiles.

The discussion above leads to two simple graphical mettmpastile plots and probability plots, for
assessing the fit of a model. Note that some authors use thepbability plots’ for both methods.

Quantile plot

For this you must have an analytic or numerical method metbodomputing values of ' (z; 6)
(e.g. usingR). The procedure is as follows:

. Compute an estimatefor ¢ (e.g. the method of moments estimate).

N -

. Order the observations to obtain the order statistiestfie sample quantiles),), ..., z,).

3. Fork =1,...,n, computeFy'(k/(n+ 1);0). These are the fitted quantile values
(i.e. the values we would expect for the quantiles if the nheges correct).

4. Fork =1,...,n, plotthe paird Fx'(k/(n + 1);0), z)-

5. Add the liney = z to the plot (i.e. the line through the origin with slope 1).

If the points show only minor, random deviations from thee|ithen there is no reason to reject the
model. If there are striking or systematic deviations frém line, then this may be evidence that the
model is incorrect.

Probability plot

This proceeds in a similar way to a quantile plot, except joat now need to be able to compute
values ofF'x (x; #), and you plot the values of the sample probabilifiggz,; ¢) against the expected
valuesk/(n+1), k=1,...,n.

Quantile and Probability plots in R

These plots are easy to producdifor the standard families of distributions. Consider a fgrodlled
name with probability density functiory (x; #) and distribution functiorf'(x; #) which depend on a
parameted. Then, for given numerical values ofandf, we can use th& functions

e dname(z, ) - which returns the value of theedsity f(x; )

e pname(z, ¢) - which returns the value of thegbability F'(x;0) = P(X < x;0)

e gnane(z, #) - which returns the value of theugntile 7'~ (; §)
For more information on exactly what parameters need to beifsgd for each distribution, use the
help facility in R - for example try typinghel p(dexp), hel p(duni f), hel p(dgamra) or
hel p(dnormn.



2.11 Example — Earthquakes

Thequakes data set in section 1 records the 62 times between successives earthquakes. Often
such times will be well modelled by an Exponential distribntwith parameter. Write ¢ for the
method of moments estimaigom. We have seen earlier that for this modet 1/m; = 1/z.

The following R commands implement the procedure above for computing atitpigiot (or Q-Q
plot) when the observations are thought to come from a Higion following an Expf) model. Do
not type the comments after the # character, or the # chaitss#!! Note that to access the data you
may first need to type

| oad(url ("http://ww. mat hs. bri s. ac. uk/ %WEmapj g/ Teach/ St at s1/statsl. RData")).

> ml <- mean(quakes) # these commands compute the sample mean

> theta <- 1/nml # and from it compute the mom estimate

> quakes.ord <- sort(quakes) # this computes a vector of ordered sample opsns
> gquant <- seq(1l:62)/63 # computes a vector of values k/(n+1) n=62;k=1,

> gquakes.fit <- gexp(quant,theta)#...,62andfrom itthe fitted quantile values

> pl ot (quakes.fit, quakes.ord, # this plots fitted quantiles vs. observed quantiles
+ yl ab="Sanpl e quantil es", # and adds axes labels and main title

+ xlab="Quantiles of fitted distribution",

+ min="Title - id")

> abline(0,1) # this adds a line, intercept 0, slope 1, to the plot

The Q-Q plot of the sample quantiles against the quantilégeditted model is shown below, together
with a corresponding plot of the probabilities. Althougle fhoints do not lie exactly on a straight line,
there does not appear to be any significant systematic aeviabm the liney = x, and no substantial
reason to reject the Exponential model.

Quakes quantile plot — mapjg Quakes probability plot — mapjg
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2.12 Interpreting Quantile Plots

The plots below show a range of different ways in which thegandata may differ systematically
from the predictions of the fitted model. They are based om®baof sizen = 1000.

(a) Here the sample actually comes from the fitted model. Agebed, we see the points lying fairly
well along the line.

(b) Here the sample is from a distribution with longer leftdaight tails than the fitted model. What

we see is that the sample quantiles at each end are much mea& gut than one would expect if the

model was correct, so they are smaller at the left-hand eddaager at the right-hand end than the
corresponding expected quantiles for the fitted distrdsytand this shows up clearly in shape of the
plot.

(c) Here the sample is from a distribution with shorter leftlaight tails than the fitted model. What
we see is that the sample quantiles at each end are much teas st than one would expect if the
model was correct, so they are larger at the left-hand endaradler at the right-hand end than the
corresponding expected quantiles for the fitted distrdsytand again this shows up clearly in shape
of the plot.

(d) Here the sample is from a distribution which correspaieda random variable which is a loca-
tion/scale mappingX — aX +b) of that specified by the fitted model. What we see is that theslr
transformation does not affect the fit to a straight line,ibdbes affect the slope and intercept of the
line of fit.

(a) Obsns fit model distribution (b) Observations have longer tails
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(c) Observations have shorter tails (d) Obsns fit linear transformation
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