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4. Linear Regression

4.1 Introduction

So far our data have consisted of observations on a singigblarof interest. We now look at
what happens when we have additional information assatiatén each observation. For sim-
plicity we will assume that this information consists of treue of a single real-valued variable,
but the approach can easily be extended.

It is customary to us&” to denote the original variable of interest and to usé denote
the associated variable. In this notation, the data nowisbo$ a set ofn pairs of values
(x1,%1),- -, (zn, ys), corresponding to the members of our sample, whegeis the observed
value of the original variable and is the value of the associated variable for tttemember of
the sample.

We are interested in whether there is a pattern to the raktiip between the two variables which
can be used to explain or predict values of the variable efr&st in terms of the values of the
associated variable. For example, we might have data oneights and weights of a sample
of students and be interested in how well height can be uspretict weight. Alternatively we
might have data on the level of debt and the annual parertaivie for a sample of students, and
may wish to investigate whether there was any dependene&éetthe two variable, and, if so,
what form the dependence took.

Note that the two variables play different roles, in thatohiginal variable ofterdepends on the
associated variable. For example, changes in weight dosuatlly cause changes in height, but
a change in height (through growth) is usually associated am increase in weight. For that
reason the variable of interest (aurvariable) is called theesponse variable(an old-fashioned
term is thedependent variablg while the associated variable (ourvariable) is known as the
predictor variable or the explanatory variable (or theindependent variable again, best to
avoid this term).

We also need to take account of the random variation in tregioelship between the andY
values. For example, if we took repeated samples, then évea i values were kept the same
they values obtained would usually vary from sample to sampleisEn appropriate framework
is to assume that for each valu®f the explanatory variable there is a corresponghiogulation

of values ofY with its own z-dependent distribution, and we call the functigix) given by
g(x) = E(Y|x) theregressionof Y on x. In this framework, our search for a simple functional
explanation of the dependence of the (mean of Yheariable on the: variable becomes a search
for a simple expression fdi(Y'|z) which is valid over an appropriate rangezxofalues.

Thesimple linear regression modekays that relationship df(Y|z) to = is of the form
EY|r)=a+ px
For this model, the basic questions of interest are:

e What are good estimates of the unknown parametersds (assuming the model is correct)?

e How well do the data fit the model and is there any evidence ttmdata that the model |is
not correct (i.e. systematic deviation from what we wouldest if the model was correct)

e What evidence is there thatreally does depend an(i.e. thatg # 0)?
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4.6 Example — Leaning Tower of Pisa

Studies by engineers on the Leaning Tower of Pisa betweenhd@¥1987 recorded the following
data on the increasing tilt of the tower. Each tilt value ie tAble represents the difference
between where a point on the tower would have been if the tovege straight and where it
actually was in the corresponding year. The data are codehths of a millimetre in excess of
2.9 metres, so the 1975 tilt of 642 represents an actuateifte of 2.9642 metres. Only the last
two digits of the year are shown. The data are contained isthgstics 1 data framgisa ; the
variables are callegear andtilt  respectively.

Year@;) 75 76 77 78 79 80 81 8 8 8 8 8 87
Tilt(y;) 642 644 656 667 673 688 696 698 713 717 725 742 757

Fitted 637.78 647.10 656.42 665.74 675.05 684.37 693.69 703.01 712.35 73D.97 740.29 749.60
Residuals 4.22 -3.10 -042 126 -2.05 363 231 -501 0.67 -465 -597 17D 7.4

The summary statistics for the data set are:

n=13 Y x;=1053 Y y; =9018 » a7 =85475 Y y? =06271714 Y yr; = 732154

giving 7 = 81, § = 693.6923, s, = 182, s5,, = 1696 and ss,, = 15996.77.
Thus the least squares estimates are

3= Zyﬁ — T _ P _ 93187 a=g— T = —61.1209
doai —nx SSqxp

giving the fitted regression line  y = & + Bz = —61.1209 + 9.3187x

From this the fitted values and the residuals in the table easalzulated, using the formulae

gi =&+ Br;,  éi=vi—0 i=1,...,n

A scatter plot of the data is shown on the left below, togetVitr the fitted regression line. There
seems to be quite a good fit of the straight line to the data. of @fl the residuals against the
corresponding year is shown on the right. They appear toidg fandom, with equal numbers
of +'ve and—'ve values and no obvious systematic pattern or systenratcltin variability.
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4.7 Analysing linear regression models in R

R has a simple commarich for analysing linear regression models. This command preslu
anR object, containing a variety of numerical outputs which baraccessed using appropriate
commands such amef , fitted ,residuals ,plot andsummary.

Assume the predictorr] values are in a data arraglata and the responseg) values are in a

data arraydata . We can perform an initial analysis with the commands:

> plot(xdata,ydata)

> xyoutput <- Im(ydata ~ xdata)

> coef(xyoutput)

The first line produces an initial scatter plot, the secone {ellsR to perform a linear regression
with the response values yalata and the predictor values kdata and to store the output in
the objecixyoutput , and the third line produces a vector containing the leastiss estimates
of the intercepty and the slopé.

> plot(xdata,ydata); abline(coef(xyoutput))
will produce a scatter plot together with the fitted regrasdine — i.e. the line whose intercept
is the first value and whose slopés the second value in the vectmwef(xyoutput)

> fitted(xyoutput)

> residuals(xyoutput)

will respectively output the vector of fitted values and tleetor of residual values. Thus, for
example, we can plot the residuals against the predictaesakith the command:

> plot(xdata,residuals(xyoutput))

Towards the end of the course, we will look at other outputhsassummary(xyoutput)
which produces (among other things) estimates®adind of Vafa) and Vai3).

For the Leaning Tower of Pisa example above, the predictearjyvalues are in the variable
year and the response (tilt) valuestitt , in the data framgisa . | used the commands:
> attach(pisa); pisafit <- Im(tilt = year)
to perform the linear regression analysis and store theubunpthe objectpisafit . | then
inspected the scatter plot and the fitted line with the comdaan
> plot(year,tilt); abline(coef(pisafit))
and inspected the values of the least squares estimatetheitommand:
> coef(pisafit)
which gave output:
(Intercept) year
-61.120879 9.318681
Finally | inspected the fitted values and the values of theloads with the commands:
> fitted(pisafit)
> residuals(pisafit)
and plotted the residuals against the predictor (year)egahlith the command:
> plot(year, residuals(pisafit))
(for those who are interested, | used #sgments command, specifically
> segments(year,0,,residuals(pisafit)); abline(h=0)
to add the extra lines — séelp(segments) ).



4.10 Normal linear regression
If we are prepared to assume a little more thaf4r2, we can make stronger statements about
the least squares estimates.

It is sometimes reasonable to assume that the efrgfsare normally distributed. We still have
E(e;) = 0 andVar(e;) = o2, so the extra assumption is that~ N(0, o?), independently for
1=1,2,...,n.

This is equivalent to saying that ~ N(a + Sx;,0?), independently foi = 1,2,... n.

Some of the consequences (not proved here) are:

o the least squares estimatés () are also the maximum likelihood estimates (so we have a
second good reason to think they will be reasonable estghate

¢ the estimates are themselves Normally distributed:
& ~ N(a, 0?[1/n + T2 /5544])

B ~ N(B,0?/55:2)

(these facts will be useful near the end of the course, whedisaeiss hypothesis testing
and confidence intervals in linear regression)

Note that we cannot check the assumption fffat~ N(a + Sz;,0?) from the data by sim-
ply making a histogram, stem-and-leaf plot, or QQ plot of da¢ay, vy», .. ., y,, since all the
observations havdifferent normal distributions. But we can carry out a check after thedr
regression has been fitted, by looking at the residuals. @aint the example i§4.7, typing
> ggnorm(residuals(xyoutput))

shows a Normal Q-Q plot of the residuals and helps check fofarmality.

4.11 Visual assessment of the quality of fit of a linear regreson model to data
One way of assessing the fit of a model is by examining a plohefresiduals,, é, ..., é,
(plotted against the predictor values s, . .., x, or the fitted valueg,, 9, . . ., U»)-

If the model in§4.2 is correct, themy,e,, ..., e, iIs a random sample from a distribution with
expectation 0 and varianeé. We cannot observe or calculatg e, . . ., e,,, but we can look at
their estimateg,, é,, . . ., ¢, instead. What we should see:

no systematic pattern in the size or sign of the residuals

and, if we assume normally distributed errors a$4ri0, additionally:

a roughly symmetric distribution of the residuals about O

no extreme outliers (residuals 36 or < —30, say)

If what we see departs from this ideal, we may be able to judga the pattern we can see
how to change the model so that it does fit for example, we naitinv the error variance? to
depend onx, or we could include a quadratic term in the model, IR& |z) = o + Bz + a2
But this is beyond the scope of this unit.



4.12 Examples of Lack of Fit

In linear regression examples, you should always plot thetp@n a scatter plot, draw in the
estimated regression line, and also plot the residuals Ay enable you to see by eye (i) if the
basic linear model is incorrect; (i) if there are any undsaksservations or outliers, which may
perhaps have been wrongly recorded; (iii) if the regresbmanis especially sensitive any of the
observations. This information may not be at all apparesitfjom the summary data values.

The example below, due to Anscombe, brings out this poirariielt consists of four artificial
data sets, each of 11 data pairs, with the same values of lthemné summary statistics. Thus
each data set gives rise to exactly the same regressiomithexactly the same inferences far

(3 ando?. The data are contained in the Statistics 1 datasetombe .

Data Set1 xvalues 10 8 13 9 11 14 6 4 12 7 5
yvalues 8.04 6.95 7.58 8.81 833 9.96 7.24 426 10.84 4.82 5.68
Data Set2 xvalues 10 8 13 9 11 14 6 4 12 7 5
yvalues 9.14 8.14 874 877 9.26 8.10 6.13 3.10 9.13 7.26 4.74
Data Set 3 xvalues 10 8 13 9 11 14 6 4 12 7 5
yvalues 7.46 6.77 12.74 7.11 7.81 884 6.08 539 &8.15 6.42 5.73
Data Set4 xvalues 8 8 8 8 8 8 8 19 8 8 8
yvalues 6.58 5.76 7.71 8.84 8.47 7.04 525 1250 556 7.91 6.89

The summary statistics for each data set are (approximately
n=11 Y2, =99 Yy =825 S22 =1001 S 92 =660 3 yux; = T797.5.

From the scatter plots with the fitted regression lines, veeisenediately that there is a lack of
fit for data sets 2, 3 and 4: in data set 2 the relationship twendy is quadratic rather than
linear so the simple linear model is incorrect; in data sdte3simple linear regression model is
correct, but a very clear regression line is distorted byetffiect of a single outlier; in data set
4, the regression line is particularly sensitive to thealue for the single observation taken at
x = 19 and it is impossible to tell from this choice efvalues whether or not a simple linear
regression model is suitable.
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