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5. Assessing the Performance of Estimators

5.1 Different methods of Estimation

So far we have seen two general (parametric) model-based methods for estimating a population
quantity (the method of moments and the methods of maximum likelihood), in which we find an
expression for the population quantity in terms of the unknown parameterθ, use the principle in
question to estimateθ, and finally plug the estimatêθ into the expression to give an estimate for
the population quantity. Often there may also be a direct ‘non-parametric’ alternative, in which we
simply use the relevant sample quantity to estimate the population value.

For example, say we wanted to estimate the population medianfor a population which has a
Uniform(0, θ) distribution whereθ is unknown, using a random sample with valuesx1, . . . , xn.
The parametric methods use the fact that the population median for this distribution isθ/2.

• The method of moments estimatesθ by θ̂mom = 2x̄ and so estimates the population median by
θ̂mom/2 = x̄.

• The method of maximum likelihood estimatesθ by θ̂mle = x(n), wherex(n) = max{x1, . . . , xn}

is the largest value in the sample, and thus estimates the population median bŷθmle/2 = x(n)/2.

• The non-parametric method estimates the population medianby the sample median.

For a given set of sample data, the three methods will result in three different estimates. The
questions are which estimate (or method of estimation) is best, and how can we compare the
methods when we don’t actually know the true value of the quantity we want to estimate.

If we do not know the true value we are trying to estimate, we cannot usefully compare methods of
estimation using only the resulting numerical estimates from a single sample.

5.2 Repeated sampling, and sampling distributions

The main way we compare methods of inference is to see how theyperform underrepeated sam-
pling. That is, we imagine future hypothetical samples of the samesize from the same distribution,
and examine how well each method performs in the long run. In probability language, we treat
the sample as a collection of random variablesX1, X2, . . . , Xn, regard the estimators as func-
tions of these random variables, and look at the distributions of these estimators. These estimator
distributions are calledsampling distributions, to help distinguish from the original population
distribution.

A good estimator is one whose sampling distribution is concentrated close to the true value of the
quantity it is trying to estimate. A poor estimate is one where the sampling distribution is either
very spread out, or is concentrated around the wrong value.

In some cases, we can use methods like those featured in the Probability course to calculate a
sampling distribution theoretically. For example, ifX1, X2, . . . , Xn ∼ N(µ, σ2), we know that
µ̂mom = X, and thatX ∼ N(µ, σ2/n). We will see more examples later. A more general, but
empirical, approach is to use simulation.
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5.3 Evaluating sampling distributions of estimators using simulation

In statistics, simulation is the process of artificially generating a data set that has the same proper-
ties as a set of independent observations from a given probability distribution.

Simulation-based procedures for evaluating a method of estimation work by replacing the above
idea of hypothetical future samples and probability calculations, with actual simulated numerical
samples and numerical calculations. Thus, for a particulartype of population distributionf(x; θ),
we take particular values for the parameterθ and the sample sizen. Then we generate a number
(sayB) of artificial data sets, each of which looks like a simple random sample of this fixed size
n from this particular distribution with this particular value of θ, and calculate an estimate for
each data set, giving a total ofB different estimates. The idea is that this process represents,
say, the experience of a single statistician repeatedly using the method a total ofB times in similar
statistical circumstances or, alternatively, the overallexperience ofB independent statisticians each
using the method once.

If B is large, the values of the estimates generated in theseB repeated independent experiments
should give a good indication of the sampling distribution,and hence the overall performance of
the method. Moreover, we can get a good idea of the relative strengths and weaknesses of different
methods of estimation by comparing their overall performances on the sameB data sets.

5.4 Exploring the performance of different methods – histograms

One way of exploring the performance of different methods isjust to plot a histogram of theB
estimates obtained in the simulation study.

To see how this works, consider again the problem of estimating the population median for the
Uniform(0, θ) distribution. The histograms below were constructed by simulatingB = 1000 sam-
ples, each of sizen = 10, from a Uniform distribution withθ = 1 (so the true population median
wasθ/2 = 0.5); computing the sample median, the method of moments estimate (̄x) and the max-
imum likelihood estimate (max{x1, . . . , xn}/2) for each sample; and then plotting a histogram of
the resulting 1000 estimates produced by each method. For this example, the differences in the
shape of the histograms are particularly striking; howeverin other cases several methods may give
identical or roughly similar estimates (e.g. they each giveexactly the same form of estimates for
the population mean when the population has an Exponential distribution or a Normal distribution).
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5.5 Graphical summary of performance – boxplots

Parallel boxplots are a convenient graphical method for comparing visually the sampling distribu-
tions of several different estimators, and focussing in particular on the median of each as a measure
of the centre of the distribution and the upper and lower hinges as a measure of spread.

The boxplots below correspond to the histograms in§5.4. Clearly the estimates produced by
the sample median and the method of moments are both centred on the true population median
value of 0.5 but fairly widely spread about this value (sample median more than mom). The
maximum likelihood estimates are centred on a value just below 0.5 and so the method slightly,
but consistently, underestimates the true value. However the narrow spread of mle values means
that for most samples the mle is still nearer the true value than either the mom estimate or the
sample median.
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Estimators of population median: Unif(0,θ=1) with n=10

5.6 Numerical summary of performance – bias, variance and mean squared error

We can also use numerical rather than graphical summaries ofperformance, to compare the average
value of our estimator(s) with the true value. Letθ̂ be an estimator of an unknown parameterθ.
We define two key properties of its sampling distribution:

• bias(θ̂) = E(θ̂ − θ) and we saŷθ is unbiased if bias(θ̂) = 0.

• mse(θ̂) = E[(θ̂ − θ)2] and you can check that mse(θ̂) = Var(θ̂)+ bias(θ̂)2.

In some cases we can derive explicit analytic expressions for the mean, variance and mean square
error of an estimator. However, in more complicated cases wemay have to evaluate these numeri-
cally from repeated samples. Say we want to estimateθ or, more generally, a functionτ(θ) whose
true value isτ and our simulation study producesB estimateŝτ1, . . . , τ̂B with mean̄τ =

∑B

i=1 τ̂i/B

and variance
∑B

i=1(τ̂
2
i − τ̄)2/(B − 1).

Bias
The difference between the estimated valueτ̂i and the true valueτ represents the error in the
estimate for theith sample. Thus the average error is justτ̄ − τ , and the size and sign of this
average error is an indicator of the bias in the method – i.e. by how much the method consistently
under-estimates or over-estimates the true value.
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Mean squared error
Since positive and negative errors cancel out in calculating the average error, a better measure
may be the average of the squared errors, i.e.

∑B

i=1(τ̂i − τ)2/B. You can check that
∑B

i=1(τ̂i −

τ)2 =
∑B

i=1(τ̂i − τ̄)2 + B(τ̄ − τ)2, so that forB large the average squared error is just the
variance+ (average error)2.

For our Uniform distribution example, the quantityτ that we want to estimate is the population
median, and true value in our simulation study isτ = 0.5. The mean, average error, variance and
average squared error of the 1000 sample medians are given inthe table below, together with the
corresponding quantities for the 1000 method of moments estimates of the population median and
the 1000 maximum likelihood estimates.

The table confirms numerically the impression from the graphical summary – the size of the av-
erage error is larger for the method of maximum likelihood than for the other two methods, but
there is a much smaller spread of estimates than using the method of moments, which in turn has a
smaller spread than the non-parametric method using the sample median. Here the variance term
dominates in calculating the average squared error, so in this case the mle method has the smallest
average squared error, then the method of moments, then the estimate based on the sample median.

Methods of estimating average error spread average squared error
the population median (estimates bias) (estimates variance) (estimates mse)

sample median 0.00497 0.01861 0.01863
mom 0.00376 0.00798 0.00800
mle −0.04403 0.00168 0.00362

Returning to the case of estimatingµ using a simple random sample fromN(µ, σ2) mentioned in
§5.2, here we can calculate these key quantities analytically: the bias is 0, and the variance and
mse are bothσ2/n.

5.7 Simulation using R: assessing a single estimator

The steps in a simulation study like the one above are

• generaten × B numbers (representing independent observations from the given distribution),

• arrange the values inB groups ofn (representing theB simple random samples of sizen)

• calculate the relevant estimate(s) for each sample

• analyse the results, numerically or graphically as required.

The following example shows how we might useR to investigate the performance of the method
of moments when the observations come from the Unif(0,1) distribution, the method of moments
estimate is2x̄ and the quantity we want to estimate is the parameterθ, which here has true value
θ = 1. It usesB = 1000 samples each of sizen = 10, and so requires the generation ofn × B =
10000 simulated observations.
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xvalues <- runif(10000)
xsamples <- matrix(xvalues,nrow=1000)
sample.mean <- apply(xsamples, 1, mean)
theta.mom <- 2 * sample.mean
hist(theta.mom)
boxplot(theta.mom)
true.theta <- 1
mean(theta.mom - true.theta)
var(theta.mom)
mean( (theta.mom - true.theta)ˆ2 )

The example introduces three new commands,runif(), matrix() andapply() – the com-
mandshist(), boxplot(), mean() andvar() were introduced in§1. Note that I have
not shown the > prompt at the start of each line; also the names used for variables and ar-
rays are just one I chose for clarity, and you could replace the namesxvalues, xsamples,
sample.mean, theta.mom andtrue.theta by others of your own choice.

Let us look at these commands in turn:

Generating (random) numbers
xvalues <- runif(10000)
simulates 10000 independentrandomuniform values from the standard Unif(0,1) distribution and
assigns them to a vector which I have calledxvalues . For observations from the Unif(0,1) distri-
bution we just have to specify the number of observations required; to simulate observations from
a general Uniform distribution we also need to specify the parameters of the distribution, e.g. for
Unif(-1,2) we userunif(10000,min =-1,max=2) or more simplyrunif(10000,-1,2) .

Arranging into random samples
xsamples <- matrix(xvalues, nrow=1000)
takes the one-dimensional data arrayxvalues of length 10000, and rearranges it into a ma-
trix xsamples in which the elements ofxvalues are rearranged into1000 rows each with
10000/1000 = 10 values. The 10 data values in each row represent a simple random sample of
sizen = 10 from a Unif(0,1) distribution and the 1000 rows represent the B = 1000 independent
repeated samples.

Calculating sample statistics
sample.mean <- apply(xsamples,1,mean)
Theapply command works as follows: letxij denote theijth element of the matrixxsamples ,
then for each value of the1st subscriptapply(xsamples, 1, mean) applies the command
mean to the set of values that share that1st subscript (i.e. to each row in turn). Thussample.mean
has 1000 entries (since there are 1000 rows), and these values represent the means of 1000 indepen-
dent random samples, each of size 10, from a Unif(0,1) distribution. Similar commands can be used
for other sample statistics, e.g.apply(xsamples, 1, median) or apply(xsamples,
1, max)

The commands produce a histogram and boxplot similar to the ones shown below, together with
summary numerical values of the average error, variance andaveraged squared error of the esti-
mates. Note the bell shaped symmetrical distribution aboutthe true value ofθ = 1.
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Histogram of theta.mom
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Boxplot of theta.mom

5.8 Simulation using R: comparing several estimators

Once we have generated our random samples we can easily useR to compare different methods of
estimation.

Consider again the example introduced in§5.1, where we wanted to estimate the population median
τ = θ/2 for a population which has a Uniform(0, θ) distribution, whereθ is unknown. Recall that
the non-parametric method estimate is the sample median, the method of moments estimate isx̄
and the mle ismax{x1, . . . , xn}/2.

The following commands extend those in§5.7 to allow us to compare graphically the performance
of these three methods of estimation, producing a boxplot like that in§5.5. Again, we focus on
the case when the true value isθ = 1, so the true value of the median isτ = 0.5, and simulate
B = 1000 samples each of sizen = 10 from the Unif(0,1) distribution.

xsamples <- matrix(runif(10000),nrow=1000)
sample.median <- apply(xsamples,1,median)
sample.mean <- apply(xsamples,1,mean)
sample.max <- apply(xsamples,1,max)
tau.nonparam <- sample.median
tau.mom <- sample.mean
tau.mle <- sample.max/2
boxplot(tau.nonparam,tau.mom,tau.mle)
true.tau <- 0.5
abline(h=true.tau,lty=2)

Notes on these and other possible commands:

xsamples <- matrix(runif(10000),nrow=1000)
– here we have combined into one the two separate lines we usedbefore, generating the raw values
and formatting them as 1000 samples of size 10. Where this doesn’t sacrifice readibility, this kind
of thing makes theR code more compact, and is a good idea.

boxplot(tau.nonparam,tau.mom,tau.mle)
plots all three boxplots in a single figure. You could produceannotations similar to those shown
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in §5.5, by using the subcommandnames to add labels to each plot and the subcommandmain
to add an overall title, as in the command below. I’ve displayed the prompts to show how the
command stretches over three lines.
> boxplot(tau.nonparam,tau.mom,tau.mle,
+ names = c("sample median","mom","mle"),
+ main="Estimators of the population median ")

abline(h=true.tau,lty=2)
Here theabline() command which we met in§2 is used to add a horizontal line to the boxplot
at the true value ofτ to make comparison easier. Thelty=2 gives a dashed line (type 2) rather
than an ordinary line (type 1).

The extra commands below will produce a comparison plot of histograms of the three estimators,
similar to that in§5.4. Thepar(mfrow = c(1,3)) sets the graphics to produce a page with
three plots aligned in one row (andpar(mfrow = c(1,1)) resets the graphics to one plot per
page); thexlim() andylim() commands specify the x and y plotting range explicitly rather
than using default values, ensuring that all three plots areon the same scale for easier comparison.
par(mfrow = c(1,3))
hist(tau.nonparam,xlim=c(0,1),ylim=c(0,350))
hist(tau.mom,xlim=c(0,1),ylim=c(0,350))
hist(tau.mle,xlim=c(0,1),ylim=c(0,350))
par(mfrow = c(1,1))

5.9 Disadvantages of simulation-based methods for evaluating the sampling distribution

The disadvantages of simulation-based methods are that each simulation only provides information
about one particular situation and gives no direct information about what would happen for:

• other sample sizesn

• other values of true parameterθ

• other types of population distributionf(x; θ)

• other methods of estimation

Also, the numerical accuracy of estimates of quantities like the bias is limited by the finite size of
B, the number of samples.

Therefore, as mentioned in§5.2, we use probability theory to find sampling distributions whenever
this is possible.
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