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5. Assessing the Performance of Estimators

5.1 Different methods of Estimation

So far we have seen two general (parametric) model-basdubdgefor estimating a population
guantity (the method of moments and the methods of maximketitiood), in which we find an
expression for the population quantity in terms of the umkmgarametet, use the principle in
question to estimaté, and finally plug the estimatinto the expression to give an estimate for
the population quantity. Often there may also be a direat-parametric’ alternative, in which we
simply use the relevant sample quantity to estimate thelptipo value.

For example, say we wanted to estimate the population mddraa population which has a
Uniform(0, ¢) distribution whered is unknown, using a random sample with valugs. .., x,.
The parametric methods use the fact that the populationanddr this distribution i9/2.

e The method of moments estimatéby b.mom = 27 and so estimates the population median by
Omom /2 = .

e The method of maximum likelihood estimatéby - T(ny, Wherez ) = max{zy,...,x,}
is the largest value in the sample, and thus estimates thdgiam median by?mle/2 = T(n)/2.

e The non-parametric method estimates the population mdxidime sample median.
For a given set of sample data, the three methods will resutftriee different estimates. The

guestions are which estimate (or method of estimation) &, end how can we compare the
methods when we don’t actually know the true value of the gtyawe want to estimate.

If we do not know the true value we are trying to estimate, wenca usefully compare methods|of
estimation using only the resulting numerical estimatesifa single sample.

5.2 Repeated sampling, and sampling distributions

The main way we compare methods of inference is to see howpirdgrm underepeated sam-
pling. Thatis, we imagine future hypothetical samples of the ssimeefrom the same distribution,
and examine how well each method performs in the long run.rdbability language, we treat
the sample as a collection of random variabkés X, ..., X,,, regard the estimators as func-
tions of these random variables, and look at the distrilngtiof these estimators. These estimator
distributions are calledampling distributions, to help distinguish from the original population
distribution.

A good estimator is one whose sampling distribution is catre¢ed close to the true value of the
guantity it is trying to estimate. A poor estimate is one véhttre sampling distribution is either
very spread out, or is concentrated around the wrong value.

In some cases, we can use methods like those featured in ebalflity course to calculate a
sampling distribution theoretically. For example Xf, X,,..., X,, ~ N(u,0?), we know that
fimom = X, and thatX ~ N(u,c%/n). We will see more examples later. A more general, but
empirical, approach is to use simulation.



5.3 Evaluating sampling distributions of estimators using snulation

In statistics, simulation is the process of artificially geating a data set that has the same proper-
ties as a set of independent observations from a given pildpalistribution.

Simulation-based procedures for evaluating a method ohasbn work by replacing the above
idea of hypothetical future samples and probability caltahs, with actual simulated numerical
samples and numerical calculations. Thus, for a partidyfse of population distributiorf (z; 6),

we take particular values for the parameteand the sample size. Then we generate a number
(say B) of artificial data sets, each of which looks like a simpledam sample of this fixed size
n from this particular distribution with this particular ved of §, and calculate an estimate for
each data set, giving a total &f different estimates. The idea is that this process reptgsen
say, the experience of a single statistician repeatedhgubkie method a total aB times in similar
statistical circumstances or, alternatively, the ovexgllerience oB3 independent statisticians each
using the method once.

If B is large, the values of the estimates generated in tBesspeated independent experiments
should give a good indication of the sampling distributiangd hence the overall performance of
the method. Moreover, we can get a good idea of the relatigagths and weaknesses of different
methods of estimation by comparing their overall perforogsnon the samB data sets.

5.4 Exploring the performance of different methods — histogams

One way of exploring the performance of different methodgiss to plot a histogram of th&
estimates obtained in the simulation study.

To see how this works, consider again the problem of estigdtie population median for the
Uniform(0, ¢) distribution. The histograms below were constructed byusating B = 1000 sam-
ples, each of size = 10, from a Uniform distribution withd = 1 (so the true population median
wasé/2 = 0.5); computing the sample median, the method of moments egtiftpand the max-
imum likelihood estimaterfax{x, ..., z,}/2) for each sample; and then plotting a histogram of
the resulting 1000 estimates produced by each method. Foexample, the differences in the
shape of the histograms are particularly striking; howavether cases several methods may give
identical or roughly similar estimates (e.g. they each gixactly the same form of estimates for
the population mean when the population has an Exponeigtaluition or a Normal distribution).
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5.5 Graphical summary of performance — boxplots

Parallel boxplots are a convenient graphical method forgaomg visually the sampling distribu-
tions of several different estimators, and focussing itipalar on the median of each as a measure
of the centre of the distribution and the upper and lower ésngs a measure of spread.

The boxplots below correspond to the histogramg5m. Clearly the estimates produced by
the sample median and the method of moments are both centrdtedrue population median
value of 0.5 but fairly widely spread about this value (sanpiedian more than mom). The
maximum likelihood estimates are centred on a value jusivb@.5 and so the method slightly,
but consistently, underestimates the true value. Howéenarrow spread of mle values means
that for most samples the mle is still nearer the true valaa #ither the mom estimate or the
sample median.

Estimators of population median: Unif(0,6=1) with n=10

P

0.8
|

0.6
|

0.4

0.2

N
T
Sample median MOM MLE

g
T

5.6 Numerical summary of performance — bias, variance and nman squared error

We can also use numerical rather than graphical summarpesfoirmance, to compare the average
value of our estimator(s) with the true value. léebe an estimator of an unknown parameter
We define two key properties of its sampling distribution:

e biagf) = E(4 — 0) and we say is unbiased if bia®) = 0.
e msdf) = E[(0 —6)%]  and you can check that m&@E Var(f)+ biag0)>.
In some cases we can derive explicit analytic expressiarnthémean, variance and mean square

error of an estimator. However, in more complicated casesaihave to evaluate these numeri-
cally from repeated samples. Say we want to estirfiate more generally, a function(f) whose

true value is- and our simulation study producBsestimates, . . ., 75 with meanr = Zf;l 7/ B
and varianc&.” (72 — 7)%/(B — 1).
Bias

The difference between the estimated valyand the true value represents the error in the
estimate for theth sample. Thus the average error is jast 7, and the size and sign of this
average error is an indicator of the bias in the method —y.&wdw much the method consistently
under-estimates or over-estimates the true value.



Mean squared error

Since positive and negative errors cancel out in calcigative average error, a better measure
may be the average of the squared errors,Eéz.l(ﬁ» — 7)%/B. You can check thazf;l(%i —

7?2 = .2 (7 — 7)® + B(7 — 7)?, so that forB large the average squared error is just the
variance+ (average errgf.

For our Uniform distribution example, the quantitythat we want to estimate is the population
median, and true value in our simulation study is- 0.5. The mean, average error, variance and
average squared error of the 1000 sample medians are gitke table below, together with the
corresponding quantities for the 1000 method of momenishatts of the population median and
the 1000 maximum likelihood estimates.

The table confirms numerically the impression from the gigglsummary — the size of the av-
erage error is larger for the method of maximum likelihoodrtfior the other two methods, but
there is a much smaller spread of estimates than using theohet moments, which in turn has a
smaller spread than the non-parametric method using thpleanedian. Here the variance term
dominates in calculating the average squared error, sascdise the mle method has the smallest
average squared error, then the method of moments, thesttheae based on the sample median.

Methods of estimating average error spread average squared error
the population median | (estimates bias) (estimates variance) (estimates mse)
sample median 0.00497 0.01861 0.01863
mom 0.00376 0.00798 0.00800
mle —0.04403 0.00168 0.00362

Returning to the case of estimatipgusing a simple random sample fraWy ., 0?) mentioned in
65.2, here we can calculate these key quantities analyticdle bias is 0, and the variance and
mse are botlr? /n.

5.7 Simulation using R: assessing a single estimator

The steps in a simulation study like the one above are

generate: x B numbers (representing independent observations fromitka distribution),

arrange the values iB groups ofn (representing thé& simple random samples of siz¢

calculate the relevant estimate(s) for each sample

analyse the results, numerically or graphically as require

The following example shows how we might uBdo investigate the performance of the method
of moments when the observations come from the Unif(0, 1jidigion, the method of moments
estimate iz and the quantity we want to estimate is the paramgterhich here has true value
0 = 1. It usesB = 1000 samples each of size= 10, and so requires the generationnok B =
10000 simulated observations.



xvalues <- runif(10000)

xsamples <- matrix(xvalues,nrow=1000)
sample.mean <- apply(xsamples, 1, mean)
theta.mom <- 2 =*sample.mean

hist(theta.mom)

boxplot(theta.mom)

true.theta <- 1

mean(theta.mom - true.theta)
var(theta.mom)

mean( (theta.mom - true.theta)™2 )

The example introduces three new commanaisif(), matrix() andapply() —the com-
mandshist(), boxplot(), mean() andvar() were introduced ir§1. Note that | have
not shown the > prompt at the start of each line; also the names used forblasand ar-
rays are just one | chose for clarity, and you could replaeentmesvalues, xsamples,
sample.mean, theta.mom andtrue.theta by others of your own choice.

Let us look at these commands in turn:

Generating (random) numbers

xvalues <- runif(10000)

simulates 10000 independeam@indomuniform values from the standard Unif(0,1) distribution and
assigns them to a vector which | have cabedlues . For observations from the Unif(0,1) distri-
bution we just have to specify the number of observationsired; to simulate observations from
a general Uniform distribution we also need to specify thepeeters of the distribution, e.g. for
Unif(-1,2) we useunif(10000,min =-1,max=2) or more simplyrunif(10000,-1,2)

Arranging into random samples

xsamples <- matrix(xvalues, nrow=1000)

takes the one-dimensional data arsesalues of length 10000, and rearranges it into a ma-
trix xsamples in which the elements okvalues are rearranged int@000 rows each with
10000/1000 = 10 values. The 10 data values in each row represent a simplemasdmple of
sizen = 10 from a Unif(0,1) distribution and the 1000 rows represestfh= 1000 independent
repeated samples.

Calculating sample statistics

sample.mean <- apply(xsamples,1,mean)

Theapply command works as follows: let; denote the;th element of the matrixsamples
then for each value of thiest subscripapply(xsamples, 1, mean) applies the command
meanto the set of values that share that subscript (i.e. to each row in turn). Themmple.mean

has 1000 entries (since there are 1000 rows), and thesesvajuesent the means of 1000 indepen-
dent random samples, each of size 10, from a Unif(0,1) tigion. Similar commands can be used
for other sample statistics, e.gpply(xsamples, 1, median) or apply(xsamples,

1, max)

The commands produce a histogram and boxplot similar to ties shown below, together with
summary numerical values of the average error, varianceaa@ged squared error of the esti-
mates. Note the bell shaped symmetrical distribution atfmutrue value of = 1.
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5.8 Simulation using R: comparing several estimators

Once we have generated our random samples we can easl®tas®mpare different methods of
estimation.

Consider again the example introduce@l, where we wanted to estimate the population median
T = 6/2 for a population which has a Uniforn®) distribution, where) is unknown. Recall that
the non-parametric method estimate is the sample mediamé#éthod of moments estimatezis
and the mle isnax{z,...,x,}/2.

The following commands extend thosesi 7 to allow us to compare graphically the performance
of these three methods of estimation, producing a boxgetthat in§5.5. Again, we focus on
the case when the true valuefis= 1, so the true value of the median7s= 0.5, and simulate

B = 1000 samples each of size= 10 from the Unif(0,1) distribution.

xsamples <- matrix(runif(10000),nrow=1000)
sample.median <- apply(xsamples,1,median)
sample.mean <- apply(xsamples,1,mean)
sample.max <- apply(xsamples,1,max)
tau.nonparam <- sample.median

tau.mom <- sample.mean

tau.mle <- sample.max/2
boxplot(tau.nonparam,tau.mom,tau.mle)

true.tau <- 05

abline(h=true.tau,lty=2)

Notes on these and other possible commands:

xsamples <- matrix(runif(10000),nrow=1000)

— here we have combined into one the two separate lines webe$ae, generating the raw values
and formatting them as 1000 samples of size 10. Where this\d@asrifice readibility, this kind
of thing makes th& code more compact, and is a good idea.

boxplot(tau.nonparam,tau.mom,tau.mle)
plots all three boxplots in a single figure. You could prodaceotations similar to those shown
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in §5.5, by using the subcommamadmes to add labels to each plot and the subcommiauach

to add an overall title, as in the command below. I've dispthyhe prompts to show how the
command stretches over three lines.

> boxplot(tau.nonparam,tau.mom,tau.mle,

+ names = c("sample median","mom","mle"),

+ main="Estimators of the population median ")

abline(h=true.tau,lty=2)

Here theabline() = command which we met if2 is used to add a horizontal line to the boxplot
at the true value of to make comparison easier. Thg=2 gives a dashed line (type 2) rather
than an ordinary line (type 1).

The extra commands below will produce a comparison plot stbigrams of the three estimators,

similar to that in§5.4. Thepar(mfrow = c(1,3)) sets the graphics to produce a page with
three plots aligned in one row (apar(mfrow = c(1,1)) resets the graphics to one plot per

page); thexim() andylim() commands specify the x and y plotting range explicitly rathe
than using default values, ensuring that all three plot®arhe same scale for easier comparison.
par(mfrow = c(1,3))

hist(tau.nonparam,xlim=c(0,1),ylim=c(0,350))

hist(tau.mom,xlim=c(0,1),ylim=c(0,350))

hist(tau.mle,xlim=c(0,1),ylim=c(0,350))

par(mfrow = c(1,1))

5.9 Disadvantages of simulation-based methods for evaluag the sampling distribution

The disadvantages of simulation-based methods are tHaseaalation only provides information
about one particular situation and gives no direct inforamaabout what would happen for:

e other sample sizes

e other values of true parametgr

e other types of population distributiof{z; 0)
e other methods of estimation

Also, the numerical accuracy of estimates of quantities file bias is limited by the finite size of
B, the number of samples.

Therefore, as mentioned §5.2, we use probability theory to find sampling distribusavhenever
this is possible.



