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 Abstract. Markov chain Monte Carlo (MCMC) methods have been used
 extensively in statistical physics over the last 40 years, in spatial
 statistics for the past 20 and in Bayesian image analysis over the last
 decade. In the last five years, MCMC has been introduced into signif-
 icance testing, general Bayesian inference and maximum likelihood
 estimation. This paper presents basic methodology of MCMC, empha-
 sizing the Bayesian paradigm, conditional probability and the intimate
 relationship with Markov random fields in spatial statistics. Hastings

 algorithms are discussed, including Gibbs, Metropolis and some other
 variations. Pairwise difference priors are described and are used
 subsequently in three Bayesian applications, in each of which there is a
 pronounced spatial or temporal aspect to the modeling. The examples
 involve logistic regression in the presence of unobserved covariates and
 ordinal factors; the analysis of agricultural field experiments, with
 adjustment for fertility gradients; and processing of low-resolution medi-
 cal images obtained by a gamma camera. Additional methodological
 issues arise in each of these applications and in the Appendices. The

 paper lays particular emphasis on the calculation of posterior probabili-
 ties and concurs with others in its view that MCMC facilitates a
 fundamental breakthrough in applied Bayesian modeling.

 Key words and phrases: Agricultural field experiments, Bayesian infer-
 ence, conditional distributions, deconvolution, gamma-camera imaging,
 Gibbs sampler, Hastings algorithms, image analysis, logistic regression,
 Markov chain Monte Carlo, Markov random fields, Metropolis method,
 prostate cancer, simultaneous credible regions, spatial statistics, time
 reversibility, unobserved covariates, variety trials.

 1. INTRODUCTION

 Let {7r(x): x E=A, where x = (xl,..., xY)T, de-
 note a specific multivariate distribution, suf-
 ficiently complex that important properties of IT
 cannot easily be studied by standard analytical,
 numerical or simulation methods. In this introduc-

 tion, we suppose for simplicity that Ir is discrete.
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 Often Ir is known only up to scale, as is typical both
 in spatial statistics and in Bayesian inference. In

 the latter, Ir is generally a posterior distribution
 7r(x) -r(x I y), for parameters x, given fixed data
 y, but we will usually suppress y from our nota-
 tion. We shall be interested in computing properties
 of ir that can be represented in terms of expecta-

 tions E, g of functions g, under ir; that is,

 Erg = E g(x)ir(x).
 xEX

 In particular, such expectations include probabili-
 ties of specified events under ir, when g is an
 indicator function. We emphasize this because one
 of the main features of the Markov chain Monte
 Carlo (MCMC) methods described in this paper is
 that they provide direct approximations to probabil-
 ities, rather than the more usual indirect ones
 found, for example, by fitting asymptotic distribu-
 tions (e.g., Tierney and Kadane, 1986; Tierney, Kass
 and Kadane, 1989). Which of these approaches is
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 4 BESAG, GREEN, HIGDON AND MENGERSEN

 more fruitful will depend on context but it is per-
 haps the flexibility of MCMC that is its greatest

 virtue. This will be illustrated, for Bayesian infer-
 ence, in the various applications considered later in
 the paper. As instances, MCMC can usually cope

 with nonstandard priors and likelihoods, with miss-
 ing data, with systems that can only be observed

 indirectly and, in a comparative experiment, with
 the posterior probability that any particular treat-
 ment is best or a group of treatments contains the
 best. Further, the accuracy of the approximations
 can be assessed.

 Markov chain Monte Carlo can be summarized as
 follows. Let P denote the transition kernel of a
 Markov chain with state space X, so that P(x -> x')
 is the probability associated with a move from x to

 x'. Suppose that P is chosen to be ergodic with
 limit distribution iT. Then if x(l) x(2) ... denotes a
 realization of the chain, the ergodic theorem im-

 plies that, for any seed x(1), the random sequence

 1 m
 (1.1) gm = - E g(X(t))

 m t=l

 converges almost surely to EDIg as m -4 oo. (We
 often do not distinguish in our notation between
 random variables or vectors and their values but,

 when necessary, identify the former by uppercase
 letters.) Thus, the central idea is to construct such

 a P and then to approximate E,g by the empirical
 average gm' obtained from a long, partial realiza-

 tion x(1), x(m) of the chain.
 Ideally, x(l) should have distribution IT, so that

 general balance

 - rTp = 7T

 ensures that the marginal distribution of each sub-
 sequent x(t) is also iT but, of course, this is gen-
 erally not feasible in situations where MCMC is
 under consideration. Instead, the chain is run from
 some fairly arbitrary state in 2' but an initial
 "burn-in" period is allowed before collecting sam-
 ples, so that x(1) should then have distribution
 rather close to iT, in an appropriate norm. Thus,
 there are five main issues in MCMC: the choice of
 P; the length of the burn-in period; the value of m;
 the possibility of estimators alternative to (1.1); and
 the estimation of the errors due to simulation.
 Methodological aspects of this paper are concerned
 primarily with the first of these. For the other four,
 we cite Diaconis and Stroock (1991), Fishman (1991,
 1992a, b), Geyer (1992), Liu, Wong and Kong (1991),
 Marinari and Parisi (1992), Mykland, Tierney and
 Yu (1995), Roberts and Polson (1994), Rosenthal
 (1992), Diaconis and Saloff-Coste (1993), Frigessi,
 di Stefano, Hwang and Sheu (1993), Meyn and

 Tweedie (1993, Chapter 16), Tierney (1994), John-
 son (1994a), Mengersen and Tweedie (1994),
 Roberts and Tweedie (1994) and the references
 therein; however, this is an area of very rapid
 development. Here, we merely comment that
 MCMC is now well within the power of a typical

 workstation for a very wide range of hitherto in-
 tractable practical applications, including those
 where a simple formulation is perturbed in a non-
 standard fashion.

 The paper is organized as follows. In Section 2,
 we first establish some notation and then discuss
 general methodology for the construction of Markov
 chains for Monte Carlo calculations, particularly in
 Bayesian inference. We emphasize the role played
 by conditional distributions, adopt a spatial point of
 view in understanding dependence and focus on
 methods relevant to the range of applications that
 follow later in the paper. We also note the impor-
 tance and intuitive appeal of the Gibbs sampler but
 suggest that the practical problems that arise in its
 use can often be countered by embracing the broader
 class of Hastings algorithms.

 Section 3 describes a class of pairwise-difference
 prior distributions that have been found useful for
 factors that are spatially or temporally indexed.
 Particular examples occur in the applications that
 are presented in the next three sections of the
 paper. Thus, Section 4 considers an area of general
 statistical interest, logistic regression with ordinal
 factors and supposed additional unobserved covari-
 ates. This is described in the context of an observa-
 tional study concerned with mortality from prostate

 cancer, classified by age group, period and cohort.
 In making predictions over subsequent time peri-
 ods, we avoid the usual MCMC "missing data"
 approach and promote an alternative, more effi-
 cient procedure. Then Section 5 discusses the anal-
 ysis of crop trials, where Bayesian modeling must
 allow for the usually substantial variation in fertil-
 ity across the experimental plots. The methodology
 is applied to data from a variety trial on spring
 barley. Some aspects of sensitivity analysis are con-
 sidered and a wider "hierarchical-t" formulation is
 introduced. Finally, Section 6 describes the model-
 ing and analysis of a low-level computer vision
 problem arising in gamma-camera imaging. Here,
 the true image has been degraded by both blur and
 noise. This section also discusses the construction
 of credible regions for two-dimensional functions.

 In Section 7, we summarize the main points in
 the paper, concluding with others before us that
 MCMC already greatly expands the horizons of
 Bayesian computing and promises more for the
 future. The paper concludes with three appendices:
 on the use of proposal distributions generated by
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 BAYESIAN COMPUTATION AND STOCHASTIC SYSTEMS 5

 some stochastic mechanism; on new MCMC meth-
 ods based on less than full conditionals; and on
 sensitivity analysis.

 Spatial applications can be thought of as home
 ground for MCMC, particularly in statistical
 physics, where there is a vast literature of which a
 small sample of particular interest to statisticians
 could include Fosdick (1963), Swendsen and Wang
 (1987), Binder (1988), Sokal (1989), Gidas (1992)
 and Marinari and Parisi (1992). There is also a
 rapidly expanding list of spatial applications,

 adopting a Bayesian or neo-Bayesian viewpoint
 and using MCMC as a computational tool. Medi-
 cal imaging provides the most common theme

 but, among a wide range of other topics, we note
 examples in agriculture, archeology, astronomy
 biogeography, computer vision, food technology,
 geographical epidemiology, remote sensing and tex-
 ture analysis; we do not itemize papers here but
 some have been added to the references. Useful
 collections of papers include those edited by Barone,
 Frigessi and Piccioni (1992), by Possolo (1991) and
 by Mardia and Kanji (1993). The pioneering ideas
 of Ulf Grenander have been especially influential,
 including his early advocacy of MCMC as a
 Bayesian "inference machine" with the maxim
 "Pattern analysis = Pattern synthesis" (Grenander,
 1983, Section 5.3). The incorporation of hyperpa-
 rameters into the Gibbs sampler to produce a fully
 Bayesian analysis is set out in Besag (1989), follow-
 ing a suggestion by David Clayton.

 Of course, spatial applications of MCMC are now
 greatly outnumbered by those in more conventional
 areas of Bayesian inference, stimulated especially
 by the landmark papers of Gelfand, Hills, Racine-
 Poon and Smith (1990) and Gelfand and Smith
 (1990). Additionally, there have been some recent
 non-Bayesian applications of MCMC in statistical
 inference. These also originate in spatial statistics
 and include maximum likelihood estimation in

 complicated model formulations, with the possible
 inclusion of constraints (Penttinen, 1984; Geyer and
 Thompson, 1992, including the discussion; Geyer,
 1991a, 1994); and MCMC calculation of exact p-
 values, particularly in preliminary significance
 testing (Besag and Clifford, 1989, 1991), which pro-
 vides perhaps the only situation in which x(1) can
 be assumed to be from iT. Non-Bayesian applica-
 tions are not considered further in this paper.

 2. CONSTRUCTION OF MARKOV CHAINS
 FOR MONTE CARLO CALCULATIONS

 2.1 Notation

 We write 7T(x) for the density of the r.v. X=
 (X1,..., Xy)T with respect to a o-finite product

 measure v. We will freely use v also to denote the
 corresponding measure on any subcollection of coor-
 dinate subspaces. The corresponding marginal

 density of Xi is written 1T(xi); in practice, Xi is
 usually but not always univariate. The minimal

 sample spaces for X and Xi are denoted byr = { x:
 Ir(x) > O} and , = {xi: 7r(xi) > O}, respectively.
 For any subset S of XM= {1, 2,..., n}, we write xS =

 {xi: i E S} and x-S = {xi: i i S}; in particular
 x-i = {xj j * i}. Also we extend this notation in an
 obvious manner, so that, for example, 1T(xs) is the
 marginal density for Xs and IT(xs I x-S) is the
 density of Xs, given X_s = x_s. For appropriate
 Borel sets B1,..., Bn associated with X1,..., XXn,
 we write Bs = HiESBi and B = B,,. Note that,
 throughout this section, B will only be used to
 denote such product sets. We use I for the usual
 indicator function. In Bayesian applications, where
 Ir(x) is typically a posterior density 7r(x I y), the
 dependence on the data y will often be subsumed
 in the notation. Irrelevant sets of measure zero will

 be ignored throughout. For a more rigorous theoret-
 ical treatment of MCMC, especially with regard to
 continuous state spaces, see, for example, Tierney

 (1994).

 2.2 The Role of Conditional Distributions in
 Multivariate Simulation

 Markov chain Monte Carlo methodology is di-
 rected at simulation from multivariate distri-
 butions, usually of nonstandard form, with com-
 ponents which are not independent. Evidently,
 simulation of a process that follows such a distribu-
 tion, whether exactly or in the limit, must make
 use of the conditional distributions of some compo-
 nents given others. Of course, we can always write

 n

 (2.1) 7r(x)= Hr1(xj I x< i),
 i=l1

 where x< = {xj, j < i}. The straightforward case
 is where, possibly after reordering the components

 x1, X2, ..., xn,9 the densities 7r(xi I x < i) are avail-
 able for simulation. In this case, static simulation
 from 7r(x) is possible, with the components being
 generated sequentially using (2.1), and MCMC is
 unnecessary.

 Much more commonly, in the sorts of complex
 stochastic model now being built in many applica-
 tion fields and demonstrated in later sections of the
 paper, there is no reordering of the variables for
 which the "one-sided" conditional distributions are
 all available. Either to construct them would re-
 quire expensive numerical integration, or the re-
 sulting densities would be awkward to simulate
 from, or both.
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 6 BESAG, GREEN, HIGDON AND MENGERSEN

 A pair of simple examples may help to illustrate
 this point. Consider first a multivariate Gaussian
 distribution IT(x), with known mean and dispersion

 matrix. Then iT(xi I x <) has a known Gaussian
 form for each i and static simulation is straightfor-
 ward; indeed, this is the stochastic interpretation of
 Cholesky decomposition. In contrast, consider the
 trivariate distribution (a special case of the autoex-
 ponential model in Besag, 1974; see also Casella
 and George, 1992),

 7T(x) a exp{-(xl + X2 + X3 + 012XlX2

 +013X1X3 + 023X2X3)},

 X1, X2, X3 2 O,

 where the 0's are positive constants. The condi-

 tional densities iT(xi I x -) are just univariate expo-
 nential; for example [cf. the general formula (2.2)],

 IT(X3 I X_3) a exp{-x3(1 + 013x1 + 023x2)},

 X3 ? 0.

 However, the density Ir(x2 I xl), obtained by ele-
 mentary integration, is already nonstandard and

 the marginal density ir(xl) involves the exponen-
 tial integral (Abramowitz and Stegun, 1970, Chap-
 ter 5), even up to scale, so that static simulation is
 clearly problematical. Looking ahead to Section 4
 for a more interesting practical example, equation
 (4.2) gives the joint posterior-predictive density
 arising in a Bayesian formulation of logistic regres-
 sion with factorial structure, extended to allow for
 unmeasured covariates. It is completely unrealistic
 in such a model to hope to be able to integrate out

 variables and calculate marginal posteriors or to
 achieve a factorization like (2.1). The MCMC meth-
 ods described and used in this paper make use only

 of conditional densities of the form ir(xi I x-i) and
 are required only up to scale. They apply to both
 the simple examples and the real application above,
 with equal facility.

 Areas which might seem more amenable to direct
 simulation using (2.1) are graphical modeling and
 pedigree analysis, where formtilations often pro-
 ceed along the lines of this factorization; such mod-
 els are described by directed acyclic graphs (e.g.,
 Whittaker, 1990). However, in the usual situa-
 tion in which calculations are needed, some of the
 variables are observed, and so conditioned upon,
 and this typically destroys the simple sequential
 structure.

 Markov chain Monte Carlo methods are most

 conveniently built upon conditional distributions of
 the form IT(XT I X-T), for various subsets T of X.
 Note that all variables are present in this expres-
 sion, within the condition or otherwise. These

 distributions are called local characteristics in

 statistical physics and spatial statistics but, more
 recently, the term full conditionals has emerged
 from the Bayesian literature and so we shall adopt

 it here. The description of a stochastic system via

 its full conditionals provides an intuitive approach
 in modeling spatial interaction (Besag, 1974), where

 there is no natural ordering of the variables. It is

 therefore not surprising that MCMC methods de-
 veloped earlier and further in spatial applications,
 before being more widely used in other areas. In
 nonspatial contexts, directionality or causality is
 often natural and models are built accordingly, so
 that the full conditionals need to be derived subse-
 quently from the model assumptions. We see sev-

 eral examples of this in later sections. When these
 distributions cannot be conveniently obtained, all is
 not necessarily lost; see Appendix 2 for an approach

 based on partial conditioning. As we see there,
 however, some reference to full conditionals must
 still be retained. We find the spatial mode of think-
 ing about complex systems of random variables
 helpful in any case. This is reflected in some of our

 choice of terminology; for example, we write of vis-
 iting sites, rather than of looping over subscripts.

 In deriving full conditionals, we note the simple
 but powerful result that, for any x E X and S cX,

 (2.2) 7T(XS I X8S) a 7Tx),

 where only the terms involving components of xs
 in any product formula for iT need be retained. In
 particular,

 (2.3) 1T(xi I x_j) a 'r(x).

 Equivalently, if x, x' Ec, with x' s = x_s, then

 7Tx' I X' %) 7T ( x')
 (2.4) XS I X_) IT(x)

 These observations are important for two main

 reasons. First, product formulae are very common.
 They arise in posterior distributions, in combining
 the likelihood with priors and hyperpriors and usu-
 ally within the likelihood itself; in spatial statistics,
 whenever ir is a locally dependent Markov random
 field; and in graphical models, as a result of condi-
 tional independence (see, e.g., Whittaker, 1990; Cox
 and Wermuth, 1993; and the references therein).
 Thus, there is often considerable simplification in
 (2.2)-(2.4). Second, ir needs to be known only up to
 scale, which is typically the case both in Bayesian
 and in spatial formulations. As a welcome bonus,
 MCMC often requires the conditionals themselves
 only up to scale, so that (2.2) and (2.3) do not need
 to be normalized.
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 BAYESIAN COMPUTATION AND STOCHASTIC SYSTEMS 7

 In a general formulation, we denote the observed

 data by y and write x = (0, 4, z), where 0, 4 and z
 are vectors of parameters, hyperparameters and
 missing observations, respectively. Then, in an ob-

 vious notation,

 (2.5) iT(x I y) a L(y, z I 0)iT(0 I 0))T(O),

 representing a hybrid between the posterior density

 of 0 and 4 and the predictive density of z. If the
 missing data factor out, they can be ignored but,
 otherwise, the standard MCMC procedure is to in-
 clude z as additional components to be updated,
 resulting in a (dependent) set of samples from the
 joint distribution of (0, 4, z) given y. Any marginal-
 ization is carried out at the final stage, simply by
 ignoring the uninteresting components of x. As a

 bonus, samples from the predictive distribution of z
 are available. Note that, even when analytical
 marginalization over z in (2.5) can be carried out,
 this may be computationally inadvisable because of
 complications it creates in the new conditional dis-
 tributions. The full conditionals corresponding to
 (2.5) are

 T(0o I 0-i, ,z,y) acL(y,z I 0)T(0i I 0-i,+),

 1T(oj I 0, 4-j, Z, y) an T(0l I 0))XT(O I

 IT(Zk I 0,, Z-k, y) a L(y, z I 0).

 In practice, there is often considerable further sim-
 plification in these formulae.

 For the most part, we will only use MCMC meth-

 ods that visit single sites or subsets of sites T, in
 turn, possibly changing the values of the corre-
 sponding variables XT, under the control of the full
 conditionals IT(XT I X-T). Then the minimal re-
 quirements will be that ir(x) is. always maintained
 and that the visitation schedule ensures irreducibil-
 ity and aperiodicity of the algorithm as a whole.
 There are two issues:

 . how to update the variables XT;

 . how to determine which set T of sites to visit.

 We address these two matters separately in the
 next two subsections; see Appendix 2 for partial
 conditioning.

 2.3 Updating Using Full Conditionals

 2.3.1 The Gibbs sampler. Markov chain Monte
 Carlo is driven by conditional probability. In partic-
 ular, Gibbs samplers (Geman and Geman, 1984;
 and, by other names, Creutz, 1979; Ripley, 1979;
 Grenander, 1983) depend on the following intu-
 itively obvious result.

 Suppose X has density ir and that T is a fixed
 subset of I. Given X = x, define the r.v. ' =

 (Xi,..., Xn) such that X'T = X-T and XT has den-
 sity ir(xT I X-T). Then X' has marginal density ir.
 This is proved by observing that

 Pr(X' e B) = |B(X-T)7(XT I X-T) dv(x)

 - f T(x) dv(x) = iT(B)

 The above procedure defines a Markov chain tran-
 sition kernel

 PT(X -- B) = I[X-T E B-T]

 (2.6) *f '7T(XT I X-T) dv(XT).

 T

 What the observation above implies is that iT is a
 stationary distribution for PT.

 The simplest special case is the single-site Gibbs
 sampler, for which

 Pi(x--B) =I[x_iEc B_i]| iT(xiJIx_i) dv(xi).
 Bi

 This involves only univariate sampling, which is a

 major attraction. Note that each time xi is up-
 dated, the other variables may have different val-
 ues, so random variate generation methods with
 high setup costs are inappropriate. In particular,
 when direct methods of simulation are unavailable,
 standard rejection sampling is likely to be very
 inefficient as an alternative. For continuous uni-
 variate densities, the ratio method (e.g., Ripley,
 1987, Chapter 3) is sometimes useful and the adap-
 tive rejection sampling (ARS) algorithms of Gilks
 and Wild (1992) and Gilks (1992) are available for
 densities that are log-concave; see also Appendix 1.

 2.3.2 Time reversibility. A stationary stochastic
 process is time reversible if its finite-dimensional
 distributions are invariant under time reversal.
 For a Markov chain, a necessary and sufficient
 condition for reversibility is that, for every pair of
 successive states X and X',

 (2.7) Pr(X c B, X' C C)
 = Pr(X c C, X' c B),

 for all (product sets) B and C (and hence all mea-
 surable B, C c k'). If iT denotes the corresponding
 (invariant) marginal density of X and P(x -> B)
 is the transition kernel of the chain, then (2.7)
 becomes

 fiT(x)P(x -- C) dv(x)

 (2.8)

 = iT(x)P(x -> B) dv(x).
 c
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 8 BESAG, GREEN, HIGDON AND MENGERSEN

 Equation (2.8) is referred to as local or detailed
 balance and implies general balance, setting B = 2.
 The MCMC algorithms in this paper do not all have
 time-reversible kernels but they all involve the con-
 cept of reversibility, either explicitly or implicitly.
 For instance, it is easily shown that the Gibbs
 kernel (2.6) is reversible. Such kernels are also
 more amenable to theoretical investigations; for ex-
 ample, the central limit theorems of Kipnis and
 Varadhan (1986) and the Monte Carlo error vari-
 ance estimates of Geyer (1992) apply. Thus, there
 are advantages in modifying an irreversible MCMC
 algorithm so that it becomes reversible, at least if
 this can be done at negligible cost.

 2.3.3 Hastings algorithms. Hastings algorithms
 (Hastings, 1970) provide a general class of alterna-
 tives to PT defined in (2.6). The construction, given
 the current state x and a set of sites T, is as
 follows. First, a potential new value or proposal x'
 is generated from a transition kernel with a density

 RT(XT X4T; X-T) and which has the follow-
 ing properties: (i) xT = x-T; (ii) RT(XT X 4;

 X-T)> >0 '> RT(XT XT; X_T) > 0; the definition
 of RT is otherwise arbitrary, provided that the
 chain that is ultimately constructed is aperiodic
 and irreducible. Then x' is accepted as the new
 state with probability

 AT(XT XT; X-T)

 (2.9) | f 7T(x')RT(X'T XT; X-T)
 \ i,(x)RT(XT X'T; X-T)|

 or else x is retained as the next state; because of
 (2.4), massive cancellations may occur in (2.9). Thus,
 writing

 QT(XT XT; X-T) = RT(XT X-T; X-T)

 *AT(XT _>X'T; X-T),

 we obtain

 PT(X -- B)

 =I[X-T E B-T] [|QT(XT _ X'T; X-T) dV(X'T)
 +I[ X E B]

 - QT(XT XT; X-T) dv(x'T)

 The time-reversibility condition (2.7) is met because

 T (X)QT (XT X'T; X-bT) 'T )QT(XT XT; X-T)

 for a II x '' _9Z, by (29A).

 There is great flexibility in the choice of the
 proposal distribution RT for a given set T. How-
 ever, it is clearly desirable that proposals can be
 generated very quickly and that acceptance proba-
 bilities are easy to calculate and are typically quite
 large, although this must not be at the expense of
 mobility. Usually such conditions suggest that the
 XT's should be low-dimensional, and most often
 they are chosen to be univariate, although the only
 requirement is that the proposal distribution should
 be easy to sample. Indeed, we use vector proposals
 in both Sections 4 and 5 of the paper.

 Gibbs samplers correspond to the choice

 RT(XT XT; X-T) = V(XT I X-T)

 independent of XT. Such proposals are always ac-

 cepted, by (2.9), but this property is not exclusive to
 Gibbs; see Barone and Frigessi (1989) for other
 (Gaussian) examples. In practice, Gibbs samplers
 require univariate updates unless 'T(XT I X- T) iS
 Gaussian or possibly if XT is binary. This can be a
 major disadvantage.

 For Metropolis algorithms (Metropolis, Rosen-
 bluth, Rosenbluth and Teller, 1953; Hammersley

 and Handscomb, 1964, Chapter 9), RT(XT
 T; X-T) iS chosen to be symmetric in XT and T,
 so that

 AT(XT XT; X-T) = mmn 1, )J
 Vr(XT IX-T)

 Note that higher-density proposals are always ac-
 cepted and that the only new function evaluation at
 each successive stage is that of the noncancelling
 terms in the odds ratio, at the points x, x'.

 With single-site updating, PT(X -> B) becomes
 Pi(x -> B), leaving x-i unchanged. For unre-
 stricted real variables, a simple Metropolis pro-
 posal, obtained from a distribution that is symmet-

 ric about the current xi and that has a spread
 similar to that of the marginal posterior for that
 variable, is usually effective. Rectangular and
 Gaussian distributions provide the obvious choices

 here. When xi is restricted to an interval, a similar
 strategy can be applied to a suitably transformed
 variable (see, e.g., Section 6). The validity of some of
 these points assumes perfect random variate gener-
 ation and perfect floating-point arithmetic. In real-
 ity, these are not available, and it is advisable to
 adopt algorithms that are not too sensitive to this;
 thus, routine use of proposal distributions with
 bounded support may be safer than using the
 heavy-tailed distributions that are sometimes advo-
 cated. Fixing on appropriate spreads usually re-
 quires a few short pilot runs and can be automated
 or carried out in an ad hoc manner. At this stage,
 we have no definite recommendations, but experi-
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 BAYESIAN COMPUTATION AND STOCHASTIC SYSTEMS 9

 ence suggests that an acceptance rate between
 about 30 and 70% for each variable often produces
 satisfactory results.

 2.3.4 Choice between samplers. As yet, there
 seem to be few hard-and-fast rules determining

 which Hastings algorithm is best in any particular
 situation. Computational, as well as statistical, effi-
 ciency should be taken into account and it should
 be noted that different considerations apply before
 and after burn-in. However, often there will be no

 need for a near-optimal choice. When IT(XT I XT)
 can be easily sampled for each T, Gibbs has a
 natural appeal and usually performs adequately.
 Hastings is almost always easy to program, easier

 than Gibbs if IT(XT I X T) does not admit a simple
 simulation method. If high efficiency is crucial,
 Gibbs may not be ideal, partly because it may run
 very much slower per cycle than Metropolis (say)
 and partly because it may be less efficient even
 cycle for cycle. In statistical physics, where interest
 typically centers on very large (the larger the
 better) systems of often binary parameters (site
 values), single-component MCMC was used for
 more than 30 years, until the advent of auxiliary-
 variable methods. Yet, despite the triviality of sam-
 pling from the componentwise full conditionals, the

 general choice was Metropolis, rather than Gibbs
 (known there as the heat bath method and, for
 binary variables, Barker's algorithm). A good rea-
 son for this in binary systems is that Metropolis

 allows one always to propose the opposite of the
 current value at each site and thereby increase the
 probability of a change, with the general aim of

 achieving greater mobility around the state space
 and eventually more efficient estimation for a given
 equilibrium run length (see, e.g., Peskun, 1973).
 There is also an advantage in the rate of conver-

 gence to equilibrium, provided the interactions be-

 tween the parameters are strong, which is the case
 of interest (see Frigessi, di Stefano, Hwang and
 Sheu, 1993, for detailed discussion).

 In continuous parameter spaces, the situation is
 more subtle but non-Gibbs algorithms still have the
 advantage that their proposal distributions can take
 account of XT, as well as X T. Examples include
 the antithetic variable methods in Barone and
 Frigessi (1989), Green and Han (1992) and Besag
 and Green (1993), which can be thought of as con-
 tinuous analogues of the binary Metropolis scheme
 mentioned above. It may also be prudent to employ
 a different algorithm before and after burn-in,
 where the possibly conflicting goals are, respec-
 tively, fast convergence to iT and efficient estima-
 tion. There is much uncharted territory here, but
 the notion that Hastings is merely to be used when

 Gibbs is difficult to implement is surely false. Note
 that Metropolis generally does not seek even to
 approximate the full conditionals in its proposal
 distributions.

 However, that is not to deny that one of the most
 common applications of Hastings in Bayesian
 MCMC is that of "correcting" any crude version of a
 Gibbs sampler. For example, as suggested in Tier-
 ney (1994), a Hastings step can be combined with a

 discrete histogram approximation to {'7r(XT I X-T)}
 so as to maintain ir exactly. In Appendix 1, we
 extend this idea to adaptive rejection sampling.
 Here, we provide a simple recipe for simulating
 from a wide range of continuous multivariate dis-
 tributions using vector proposals.

 Suppose we write iT(x) a exp{-u(x)}, x E Rn,
 and assume the existence of Vu(x), the vector of
 partial derivatives of u. Then, in general, the
 stochastic differential equation

 dx(t) = - Vu(x(t)) dt + v dw(t),

 where w(t) is standard n-dimensional Brownian
 motion, defines a continuous-time Langevin diffu-
 sion which has stationary distribution iT (see, e.g.,
 Gidas, 1992, for detailed discussion). This has led to
 the use of discrete-time Markov chain approxima-
 tions (e.g., Amit, Grenander and Piccioni, 1991) in
 which the current state x is replaced at the next
 stage by

 x' -N(x - rVu(x), 2rIn),

 where r is a small positive constant. However, if x'
 is used merely as a Hastings proposal for the next
 state, then the acceptance probability obtained from
 (2.9) ensures that ir is maintained exactly by the
 modified Markov chain. For a fixed run length, r
 should be chosen not so small as to mimic the
 continuous-time process, but rather to produce ap-
 preciable proposal increments, accepted moderately
 often. Such a Langevin-Hastings step could be em-
 ployed on subsets rather than all of the variables,
 and r might be given a distribution of its own
 instead of remaining fixed. Also, there is no neces-
 sity for the proposals to be Gaussian.

 2.4 Visiting Schedules

 We have seen in Section 2.3 that the Hastings
 family provides a convenient means of constructing
 Markov transition kernels PT with a prescribed
 stationary distribution ir, where PT has positive
 probability of changing each component of XT but
 which leaves X-T unaltered. At least if the set T is
 small, a transition according to such a kernel may
 be readily simulated. However, such a kernel can-
 not be irreducible, unless T_=r We thus need to
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 10 BESAG, GREEN, HIGDON AND MENGERSEN

 combine the kernels for a family of sets T, not
 necessarily disjoint, that coverX in such a way that
 the result is irreducible, and also aperiodic, without
 losing the property that ir is stationary. There is no
 need at all to use the same prescription to construct

 each PT; thus one can "mix and match" by combin-

 ing Gibbs and other Hastings samplers as conve-
 nient and efficient for each set T.

 2.4.1 Random scans. Random scan algorithms
 are constructed by first choosing a subset T of X
 according to a probability distribution {PT} and
 then generating a new value of XT from the corre-
 sponding kernel PT(X -> B), that is,

 (2.10) P(x -> B) = >PTPT(X -- B),
 T

 for all B. Reversibility is preserved:

 f7T(x)P(x -- C) dv(x)

 =Y2PTJ T(X)PT(X - C) dv(x)
 T B

 =EPTJ T(X)PT(X B) dv(x)
 T C

 = fr(x)P(x -- B) dv(x).

 As usually implemented, the sets T with PT 0 0
 are taken to be disjoint, but it is evident that all
 that is needed is that their union is X.

 2.4.2 Semiregular scans. In general, alternatives

 to random scan impose some regularity on the or-
 der in which sites are visited. Thus, Amit (1991)
 investigates a version of the Gibbs sampler in which

 successive visits to the same site are prohibited.
 The resulting chain is Markov on the augmented
 state space ' x X and, marginalizing over the
 update site I, must maintain ir. The chain is
 irreversible.

 2.4.3 Systematic scans. The most common varia-
 tion of (2.10) is to visit each site in turn over a
 single cycle. Cycle by cycle, this produces a Markov
 chain which, with appropriate indexing of sites, has
 transition kernel

 (2.11) P = P1P2 Pn.

 Since each Pi maintains ir, so does P. Equally,
 given subsets T1, T2, ... , Tk of A, not necessarily
 disjoint, with U Tj =Y, we could visit T1, T2, ... , Tk
 in turn, so that over a complete cycle we have

 P = PT1PT2 PTk.

 Reversibility of Pi or PT. does not imply that of P,
 but there are several means by which reversibility

 can be restored. For example, instead of the fixed
 scan in (2.11), a random order can be used, but this
 is cumbersome when n is large. Alternatives in-

 clude the forward-backward scan, for which

 P PlP2 ..Pn -l1Pn Pn -1 ..P2 Pl

 or making a random choice between the two scans
 on each cycle. One demerit of a systematic scan is
 the potential for significant artificial "drift" among
 the variables, which may in some situations hinder
 the mixing of the chain and produce visible direc-
 tional effects in spatial problems when the order of
 visiting the sites follows their spatial arrangement.

 2.4.4 Coding sets. In many spatial applications,

 the components of X can be partitioned into a few
 "coding sets" (Besag, 1974), within each of which,
 conditionally, the Xi's are mutually independent.
 For such a set S,

 IT(XS I X_s) = H1 T(xi I x-i)
 ies

 and sequential and simultaneous updating of the
 corresponding Xi's are indistinguishable. This is
 used in Sections 4 and 5. It also opens up the
 possibility of partially parallel processing and the
 availability of almost instantaneous results, even in
 very large problems. Some parallel implementa-
 tions already exist in Bayesian image analysis (see,
 e.g., Grenander and Miller, 1994). The use of coding
 sets can be made time reversible by choosing sets at
 random or at random within a cycle.

 2.4.5 Grouping variables. Of course, single-site
 Gibbs sampling is at the opposite extreme from
 what one would ideally like to do, namely, sample
 from ir itself. Sometimes it will be worthwhile to
 make a compromise and simultaneously update
 small groups of conditionally dependent compo-
 nents, chosen randomly or deterministically, with
 the aims of improving the speed of convergence to iT
 and the efficiency of estimation.

 From the point of view of statistical efficiency,
 some guidance on the merits of such grouping can
 be gained by considering the very special case in
 which iT(x) is a multivariate Gaussian density. All
 updating schemes that (a) partition the variables
 into disjoint groups, (b) visit the groups in a deter-
 ministic order and (c) use a Gibbs kernel on each
 can be expressed as first-order vector autoregres-
 sions, over a complete cycle. This representa-
 tion permits an explicit evaluation of the asymp-
 totic variance matrix of the vector of empirical
 averages of components of x. A straightforward
 generalization of the theorem in Green and Han
 (1992) shows that this variance is (1/m)V
 blockdiag(oV-)V. Here, V is the variance of ir(x),
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 BAYESIAN COMPUTATION AND STOCHASTIC SYSTEMS 11

 and (blockdiag(V-W))ij = (V-D)ij if variables i and j
 are in the same group, and is otherwise 0. This
 result may be used to assess the advantages of

 grouping, in estimating linear combinations of the

 components of E, X. For example, if all coefficients
 in the linear combination are nonnegative and the

 variables are strongly positively associated (in the
 sense that all off-diagonal elements of V are non-
 negative and all those of V1 are nonpositive), then

 the more the variables are grouped the better. An-
 other interesting consequence of the result is that

 the asymptotic variance is independent of the order
 in which the groups are visited. These observations

 are suggestive of good strategies in more general
 models. Adaptations of such updating schemes that
 replace Gibbs by Hastings steps with an antithetic
 property (there is a close analogy with overrelax-
 ation in matrix iterative methods) can be analyzed
 in a similar way. Of course, the benefits of grouping
 must be weighed against the extra effort and com-
 puter time per update involved in sampling from
 more complicated conditional distributions (see, e.g.,
 Section 5).

 Sometimes, especially when the Xi's are con-

 strained, there is no alternative to implicit or ex-
 plicit grouping. For example, suppose the Xi's are

 binary, indicating absence or presence of a particle
 at each site i of a finite regular lattice. If the total

 number of particles is known, then at least two Xi's
 at a time must be considered for any change to take
 place.

 In simultaneous updating using Hastings algo-
 rithms, proposal distributions will need scaling
 down so as to maintain appreciable blockwise ac-
 ceptance probabilities. Block updating is sometimes
 a worthwhile proposition, if only to reduce pro-
 gramming effort. On the other hand, it is rarely
 practicable for Gibbs samplers, unless the relevant
 components are conditionally independent, or
 are Gaussian or the state space is very small and
 discrete.

 3. PAIRWISE-DIFFERENCE PRIORS

 In each of the applications in the subsequent
 sections, we have need for prior distributions for
 variables ordered in time or space. In this section,
 we describe classes of pairwise interaction Markov
 random fields (MRF's) that can fulfill this role. For

 a random vector qi = Qfj,..., i/n), these MRF's take
 the form

 (3.1) ir(Q I y) a exp(- wwjF(Dy(qif -i))

 where' y is a scale parameter, 4>(u) = ((- u), the
 summation is over all pairs of sites i j that are

 deemed to be neighbors and the wij's are a corre-
 sponding set of specified nonzero weights. A wide
 range of different (F's, for both discrete and contin-
 uous distributions, can be found in the spatial liter-
 ature; for some basic choices, see Geman and
 McClure (1985, 1987), Besag (1986, 1989), Kiinsch
 (1987, 1994), Green (1990), Geman and Reynolds
 (1992) and Geman, McClure and Geman (1992). In
 almost any practical context, 7r is improper, unless
 the minimal state space is bounded; however, we
 demand that the full conditionals,

 I +-i) a yexp(- E wij(D(Y(qii - ))
 jE- di

 are well defined, where di = {j: j i}, so that IT is
 informative about some or all contrasts among the

 qi's. Note that, if (F is convex and the weights wij
 are positive, then 7r is log-concave. Often the
 weights are set to unity, although one might specify
 them in accordance with an appropriately defined
 distance between neighbors. In detailed modeling,

 there may also be negative weights, as we discuss
 later in the section.

 First we consider some of the basic choices for (D.
 The two simplest, (4(u) = 1u2 and (4(u) = lul for
 u E lR, with positive weights, are contrasted in
 Besag (1989). They are used in two examples in
 Besag, York and Mollie (1991) to estimate the risk
 from a rare disease over a set of contiguous geo-
 graphical regions, via the Gibbs sampler. The sole
 impropriety in such priors is that of an arbitrary
 level and is removed from the corresponding poste-
 rior distribution by the presence of any informative
 data. If 4>(u) = 1 u2, then

 (3.2) qi I -i Nj E - 2W)

 (the " + " denoting summation over the missing
 subscript), whereas if 4>(u) = lul, then

 (3.3) ir(qii I q- ) a y exp -y E wij I i- l)
 jEd i

 If the weights are equal, (3.3) has its mode at the
 median, rather than at the mean, of the neighbor-

 ing qij's, where here we define the median of an
 even number of observations as lying anywhere
 between the two central values in the correspond-
 ing ordered sample. This suggests that the L1-based
 prior is more appropriate when the truth is be-
 lieved to embody discrete jumps. One interpretation
 of (3.3) is as a stochastic version of the median
 filter, which is often used in remote-sensing pack-
 ages.
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 12 BESAG, GREEN, HIGDON AND MENGERSEN

 Green (1990) proposes an alternative, in the
 context of medical imaging, for which

 (3.4) CO(u) = 85(1 + 8)lncosh(u/8),

 where 8 E (0, oo) is a tuning parameter. If the
 weights are positive, X is log-concave and differen-

 tiable everywhere. This generates (3.2) as 8 -- oo
 and (3.3) as 8 -O 0, and in general treats disconti-
 nuities suggested by the data in a manner interme-
 diate between these extremes.

 The other references cited above include exam-
 ples in which (F is chosen deliberately to be noncon-
 vex, with the intention that there should be even
 less resistance to the formation of discontinuities in

 scenes from the posterior. Thus, Geman and
 McClure (1985, 1987) and Geman and Reynolds
 (1992) adopt

 O(u) = -1/(1 + Iul

 where 8 = 2 and 1, respectively. In the latter case,
 (F is concave on (0, oo) and supports images that
 consist of flats and jumps, rather than exhibiting
 smooth variation.

 Returning to a general (F, the simplest useful
 neighborhood system is the linear one for which
 i = 1,..., R, say, and i and j are neighbors if and

 only if Ii -il = 1. If the wij's are unity, this defines
 a random walk with independent increments qi, -
 i+ 1 having distribution determined by (D. We use
 versions of such prior distributions in Section 5 to
 model one-dimensional fertility variation in agricul-
 tural experiments (see also Besag and Higdon,
 1993). Another variation is to replace the indepen-
 dent first differences by independent second differ-

 ences, i' -1 - 2 /i_ + i'+ 1 , again with distribution
 determined by (F. Generally, this does not define a
 pairwise-difference prior, although it does in the
 Gaussian case (F(u) = u2, for which

 RqI iJ) = _3(i-1 + i?l)-6(q-2 + fi+2),

 for i = 3,.. ., R - 2, with appropriate modifications
 otherwise. This is the conditional expectation that
 corresponds to a locally quadratic rather than a
 locally linear stochastic interpolant.

 The above types of prior are also relevant in some
 applications that are not obviously spatial, such as
 one-way and higher-dimensional tables in which
 there are ordered categories. For example, in Sec-
 tion 4, we use a logistic regression formulation to
 analyze data on deaths from prostate cancer, with a
 linear predictor that includes three known factors:
 age group, period and cohort. For the corresponding
 vectors of parameters, we could adopt independent
 random walk priors that link together successive
 age groups, successive periods and successive co-
 horts, 'without making strong structural assump-

 tions. An easily handled modification would be to
 constrain these random walks to have mean zero or
 to have positive increments if this was believed to
 be appropriate. Another, which we illustrate in Sec-
 tion 4, would be to replace the independent first
 differences by second differences, as above (see also
 Berzuini, Clayton and Bernardinelli, 1993).

 When (3.1) refers to a finite two-dimensional ar-
 ray, with sites identified by integer-pairs of Carte-
 sian coordinates i = (r, c), there are many different
 options available. The simplest nondegenerate
 choice is (3.2), with i and j deemed to be neighbors
 if they are unit distance apart. Yet, even here, one
 needs to take care in specifying the weights over
 the array, since a naive choice can produce serious
 edge effects and so provide a poor approximation to
 the finite restriction of the corresponding spatially
 invariant infinite lattice process; see Besag and
 Kooperberg (1993) for a method of adjustment and
 Besag and Higdon (1993) for an agricultural exam-
 ple in which lateral asymmetry is an additional
 ingredient. Fortunately, edge effects are irrelevant
 in many imaging applications, where the focus of
 interest is well removed from the boundary, and, in
 that case, there is also no reason to make a Gauss-
 ian assumption. Thus, in Section 6, we adopt the
 corresponding four-neighbor version of the log cosh
 prior (3.4) in the context of gamma-camera imag-
 ing.

 The above two-dimensional and corresponding
 higher-dimensional formulations may again be use-
 ful in multiway tables. Indeed, the prostate cancer
 data suggest the existence of further unmeasured
 covariates, which we accommodate in Section 4 by
 including an additional term in the linear predictor
 for each cell. Our prior for these terms is a Gauss-
 ian density with independent components having
 common variance, but an alternative that might
 be useful elsewhere would allow for dependence
 between terms.

 There is an interesting degenerate form of Gauss-
 ian prior on two-dimensional arrays. Suppose that
 in (3.2) directly and diagonally adjacent sites are

 neighbors, with wij = 2 and -1, respectively. This
 distribution annihilates not only an overall level,
 but also arbitrary row and column effects, because
 its "density" depends only on contrasts of the form

 q'r,c - 4fr?+1,c - &fr,c+1 + &fr?+ 1,c+ 1 despite fitting
 into the pairwise-interaction framework. Further-
 more, there are no edge effects with respect to the
 corresponding infinite lattice process. It can easily
 be shown that the second-order properties are
 equivalent to those of er, c = Or 'Pc where 0 and '
 are the unrestricted random walks described above
 but with equal scale parameters (see Besag and
 Kooperberg, 1993, for further details). There is a
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 BAYESIAN COMPUTATION AND STOCHASTIC SYSTEMS 13

 trivial extension to unequal scales. Distributions
 for which such one-dimensional decompositions ex-
 ist are called separable and have received consider-
 able attention in the literature on non-Bayesian
 two-dimensional fertility adjustment (Martin, 1990;
 Cullis and Gleeson, 1991; Kempton, Seraphin and
 Sword 1994), in which it may be reasonable to
 expect fertility effects to run along rows and
 columns because of management practice.

 We conclude this discussion by considering an
 example of detailed modeling on a two-dimensional
 grid. We have in mind imaging applications where
 edge effects can be ignored. First, recall the four-
 neighbor equally weighted and the eight-neighbor

 separable priors described above. It is easily seen
 that the conditional mean in (3.2) is the correspond-

 ing predictor of il C obtained from the least squares
 fit of a plane to the nearest four site values or a
 quadratic surface to the nearest eight. The degener-
 acy in the second case is partly the result of fitting
 six parameters to only eight data points. If one
 believes in the locally quadratic surface, then a
 simple remedy is to include additional neighbors in
 the formulation. For example, the least squares fit

 to the nearest 12 values produces weights wij = 2,
 1 and - 1 for the neighbors at distances 1, F2 and
 2, respectively. Note that, because of symmetry,
 these weights also give the best cubic fit. For a
 simulated example, see Kooperberg (1993), al-
 though this has since been extended to include the
 effects of blurring, as well as white noise, in form-
 ing the data y. The above notions are not restricted

 to local polynomial fits and could presumably be
 extended to non-Gaussian priors, rather along the
 lines shown by Genran, McGlure and Geman (1992).
 We believe there is considerable potential in these
 ideas.

 4. LOGISTIC REGRESSION WITH
 ADDITIONAL UNOBSERVED COVARIATES

 Logistic regression is very widely used as a means
 of modeling binomial data, especially in biostatis-
 tics. However, in the analysis of disease prevalence,
 for example, the inclusion of known covariates may
 not be sufficient to explain the observed variability,
 with the consequence that interval estimates of the
 logits are inappropriately narrow. Williams (1982)
 describes a frequentist approach to this problem in
 terms of extra-binomial variation, which replaces
 the usual variance by one that is suitably inflated.
 Breslow (1984) discusses the corresponding modifi-
 cation of the Poisson distribution and reanalyzes
 the data in Holford (1983) on mortality from
 prostate cancer among nonwhite males in the
 United States.

 Here we describe a Bayesian formulation of logis-
 tic regression in which unexplained variability is
 catered for by the introduction of additional unmea-
 sured covariates into the model (see also Zeger and
 Karim, 1991, and, in the context of geographical
 epidemiology, Besag, York and Mollie, 1991). In
 illustrating the methodology, again on Holford's
 data, we encounter sets of temporally ordered pa-
 rameters for which the pairwise-difference distribu-
 tions of Section 3 represent our initial beliefs more
 plausibly than exchangeable priors (see also
 Berzuini, Clayton and Bernardinelli, 1993). More-
 over, since the formulation can lead to significant
 bimodality, we suggest simple mode-jumping steps
 that can be included in the algorithm, while still
 maintaining the correct stationary distribution for
 the chain. Computationally, our approach also rein-
 forces the point that Bayesian MCMC copes rou-
 tinely with substantial amounts of missing data.
 Indeed, the prediction of future events can be han-
 dled rigorously in this way, although here we pro-
 mote a more efficient alternative using traditional
 simulation.

 4.1 Prostate Cancer and an Extended Logistic
 Regression

 Holford (1983) analyses data on mortality from
 prostate cancer among the nonwhite male popula-
 tion of the United States, classified by seven five-
 year age groups and seven five-year time periods
 covering 1935 to 1969. Table 1 provides the raw
 data, together with those for three subsequent
 five-year periods, and also identifies the corre-
 sponding 16 birth-cohort groups. Only the data
 from the first seven periods will be used to fit our
 models.

 We adopt the following formulation, in which
 i = 1,..., I denotes age group, j = 1,. .., J refers

 to period and k = [ ij] = 1, . . ., K is the correspond-
 ing cohort. Thus, k = I - i + j and, initially, I =

 J = 7 and K = 13. Let nij denote the number of
 individuals at risk, and let yij denote the number
 of "respondents" (here deaths from prostate cancer)
 in cell (i, j). Let Pijr be the probability of response
 for the rth individual of the nij. We assume that
 the pijr's can be regarded as a simple random
 sample from a distribution indexed by (i, j). Then,
 conditional on the value of pij= EPijr, it follows
 that yij bin(nij, pij). Alternatively, if the pijr's
 are very small, the binomial assumption follows as
 an approximation, even when the Pijr's are known
 individually. We allow for the possibility that there
 could have been some missing data, distinguishing
 between observed and unobserved cells by means of
 superscripts (+ and -, respectively). Unobserved
 cells (i, i) must be assigned a nonzero number n;-7
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 14 BESAG, GREEN, HIGDON AND MENGERSEN

 TABLE 1

 Observations: data from only the first seven time periods were used in fitting the model

 Age Period Age
 group 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980

 50-54 Cohort 7 8 9 10 11 12 13 14 15 16

 No. Deaths 177 271 312 382 321 305 308 304 274 278
 No. at Risk 301000 317000 353000 395000 426000 473000 498000 552000 598000 629000

 55-59 Cohort 6 7 8 9 10 11 12 13 14 15
 No. Deaths 262 350 552 620 714 649 738 718 780 789
 No. at Risk 212000 248000 279000 301000 358000 411000 443000 435000 510000 583000

 60-64 Cohort 5 6 7 8 9 10 11 12 13 14
 No. Deaths 360 479 644 949 932 1292 1327 1507 1602 1712

 No. at Risk 159000 194000 222000 222000 258000 304000 341000 404000 403000 482000
 65-69 Cohort 4 5 6 7 8 9 10 11 12 13

 No. Deaths 409 544 812 1150 1668 1958 2153 2375 2742 2973
 No. at Risk 132000 144000 169000 210000 230000 264000 297000 322000 396000 401000

 70-74 Cohort 3 4 5 6 7 8 9 10 11 12
 No. Deaths 328 509 763 1097 1593 2039 2433 3066 3432 3939
 No. at Risk 76000 94000 110000 125000 149000 180000 197000 213000 233000 293000

 75-79 Cohort 2 3 4 5 6 7 8 9 10 11
 No. Deaths 222 359 584 845 1192 1638 2068 2671 3356 3928
 No. at Risk 37000 47000 59000 71000 91000 108000 118000 132000 141000 193000

 80-84 Cohort 1 2 3 4 5 6 7 8 9 10
 No. Deaths 108 178 285 475 742 992 1374 1833 2353 3184
 No. at Risk 19000 22000 32000 39000 44000 56000 66000 77000 93000 94000

 of individuals at risk. Any choice is valid, and the
 most convenient one is usually n j = 1. We have

 two main objectives: first, to produce posterior dis-

 tributions for the pij's in the first seven time peri-
 ods and for associated quantities such as odds or
 odds ratios; second, to provide predictive distribu-
 tions for the following three periods.

 Our initial model is a logistic regression with age
 group, period and cohort as explanatory variables.
 However, this proves to be inadequate (see also
 Breslow, 1984) and so we include- further covariates

 zij, which are unobserved. In a frequentist setting,
 this would be referred to as extrabinomial variation

 (Williams, 1982) but here the term is ambiguous, so

 inappropriate. We represent the zij's as a random
 sample from a N(0, 8-1), so that the pi.'s are re-
 lated via a logistic-normal model (Aitchison and
 Shen, 1980),

 (4.1) ln(lPij)

 = / + Oi + + qJ[ij] + Zij.

 We mention a possible "spatial" alternative for the

 zij's in Section 4.4. Note that fitting such a com-
 pletely confounded model in a frequentist frame-
 work requires considerable concessions in the form
 of assumptions or constraints and is not usually
 pursued in practice; the Bayesian formulation,

 however, avoids this difficulty through the adoption
 of mildly informative priors.

 Thus, for the age, period and cohort effects 0, b
 and ,t, we anticipate similarities between compo-
 nents that are adjacent in time, so that exchange-
 able priors are inappropriate. Instead, we adopt
 Gaussian pairwise-difference distributions, as de-
 scribed in Section 3. Specifically, we follow Berzuini,
 Clayton and Bernardinelli (1993) in opting for pri-
 ors based on independent second differences. Thus,
 the (unconstrained) prior "density" for 0 is

 I/2- 2\
 -R(0 I K) aC K/ exp{ -1KE (Oi- - 20i + Oi+?)2},

 i=2/

 and those for 0 and qi take similar forms with
 different scale parameters A and v, respectively.
 For ,ut, we adopt a diffuse prior (uniform on the
 whole real line) and, for K, A, v and 8, independent
 highly dispersed but proper gamma distributions
 with specified parameters (a, b), (c, d), (e, f) and
 (g, h), respectively. Other choices might be more
 appropriate but, as in any hierarchical model,
 one needs to take some care in specifying priors
 for scale parameters, so as to avoid improper
 posteriors.

 If we also include any missing values y- as
 parameters in the model and if the components are
 all treated independently, the posterior-predictive
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 BAYESIAN COMPUTATION AND STOCHASTIC SYSTEMS 15

 density, given the observations y+, is

 r( ,, o, (b, q , Z, K, A, v, 8, y-1 y+)

 (X H1 exp( ij yij) K1/2
 ij (1 + exp ei)) jz

 exp[ -2K E((Oi- - 2Q oi i+ 1)2

 r1 j-i

 AJ/2exp -- A E (- 2 + j+ 1)
 (4.2) 2 j-2 2pH j1

 -1 K-1

 v K/2exp - [ V E2( k-2q,+ + kl)j
 2k=2

 * I1J/2 exp [ _8Ez 2j* K 1 exp(-bK)

 * Ac- 1 exp(-dA) * ve- 1 exp(-fv)

 * 8g-1 exp(-h8).

 Note that individual location parameters Oi, (
 and q/k are unidentifiable in the prior and in the
 likelihood, so that posterior probability statements
 can only be made about quantities such as the
 log-odds ratios 6ij and the corresponding probabili-
 ties Pij. One of the major computational benefits of
 MCMC is that marginalization over parameters,
 whether they are identifiable or not, is carried
 out automatically, merely by ignoring them in the
 output.

 The full conditionals follow immediately from
 (4.2), up to scale, but the MCMC procedure can be
 simplified somewhat by first transforming from the
 zij's to the (ij's, in which case the conditional distri-
 butions for ,u, 0, 4 and i/ are Gaussian. We sample
 from the last three of these using Cholesky decom-
 positions, rather than running a componentwise

 algorithm. Thus, with zij and Pij defined in terms
 of ,u, 0, k, q and f as in (4.1),

 ir( I* a exp- 5E E 2

 Tr(OI ... )x exp[-j KE(Oil-20i + ? i+Q )

 -2 E EZ2

 X ( I *** )ca exp[--A E (1-24 +?1?1)

 -2> + Zij+

 1 1

 K [ * r a--8+E2.I,b

 2~~~~

 ex(iji - (1/2),zW)
 (1 + exp i+)fi)

 ( 1
 K F r(e + 2+-I2

 + ( E ( - 20i + i + 1)1
 A c+ -J d

 1

 / 1~~~~

 2 -/

 / 1 1

 2~~

 5 F * g + - IJ, h + - E z?.

 Y19 I *** bin(n7 ,pij).

 We use Metropolis to update each of the nij's, with
 a symmetric proposal distribution centered on the
 current parameter value, but it would be almost as
 easy to implement a corresponding Gibbs step. To
 achieve reversibility at negligible cost in algebra
 and programming, we form seven blocks, [ ,u ], [ 01,
 [4)], [ /], [ I, [K, A, v, 8] and [y-], within the last
 three of which the components are conditionally
 independent, so that updates can be carried out
 simultaneously. One cycle of the MCMC algorithm
 consists of a visit to each block, in random order.
 Partially parallel updating also reduces the com-
 puter time in one of the languages (APL) in which
 the algorithm was coded.

 A possible consequence of the above formulation

 is that the inclusion of the zij's can produce a
 multimodal posterior distribution. Often such
 modes can be located by hill-climbing algorithms
 with starting points near the maxima in the likeli-
 hood and in the prior. We borrowed the iterated
 conditional modes (ICM) algorithm (Besag, 1986)
 from spatial statistics and image analysis for this
 purpose. However, the locations and the corre-
 sponding densities (up to scale) do not identify
 whether there is significant probability in more
 than one mode. If the modes are at all "sticky," one
 needs to include additional mode-jumping steps in
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 16 BESAG, GREEN, HIGDON AND MENGERSEN

 the algorithm. Here, for example, differences be-
 tween age groups might be explained either by
 variability in 0 or by between-row variability in z.
 In particular, the likelihood is invariant to the
 transformation from (,u, 0, k, ii, z, K, A, v, 8) to
 (p, 0, b, i, Z*, K*, A, v, 8*), where

 = Zi., Zij Zij + Oi - 0, K* =8, 8 =K,

 where zi. is the average over j of the zij's.
 This suggests using the transformation to make a

 deterministic proposal into the other mode on each
 cycle. Since the transformation is symmetric, it
 provides a Metropolis step and is accepted with
 probability

 mI{ A,) 0*,) b,+ , Z*, K*,A,) V, 8*,Y Y+
 min 1, + ' T( pt, 0, b, , Z, K, A, v, ,y- y+) }

 from which most terms cancel out. If the proposal is

 made within the [ 0] or [h/] block, reversibility is
 maintained. A corresponding procedure can be used
 for 4 and q swaps.

 In fact, there seems to be no significant multi-
 modality in this particular example, but that was
 not the case in a rather similar metaanalysis for-
 mulation, concerned with passive smoking (ETS)
 and lung cancer. There, data for three cohorts and
 two risk groups produced a significantly bimodal
 posterior distribution for which an ordinary Gibbs
 or Metropolis algorithm mixed extremely slowly.
 The addition of the above mode-swapping proposals
 provided a simple remedy, with a substantial ac-
 ceptance rate (Besag, Higdon and Mengersen, 1994).
 Incidentally, pairwise-difference priors were not ap-
 propriate in the ETS application.

 We close this subsection with a few comments on
 alternative methods of constructing the basic
 MCMC algorithm. Initially, our model omitted the

 zij's, in which case we updated all the location
 parameters via componentwise Metropolis steps,
 although the Gibbs sampler provides a ready alter-
 native since the full conditionals are log-concave.

 When the need to include the zij's became appar-
 ent, it was natural to add further Metropolis steps,
 with a Gibbs step for 8. It was only with hindsight
 that we noticed the simplification produced by the
 transformation from z to (. The results from the
 two runs agree very closely and could of course
 have been combined. However, a feature common to
 both formulations is that there is pronounced drift
 among individual unidentifiable parameters, al-

 though the (ij's remain siable. The drift could lead
 to numerical problems, so we note that it is equiva-
 lent here to recenter 0, P and i/ at the end of each
 cycle, with corresponding adjustment to ,u. We also
 experimented with constrained formulations which

 require abandoning componentwise Gibbs or

 Metropolis but for which vector Metropolis updates
 are entirely straightforward. We sometimes incor-
 porate vector Metropolis updates even in uncon-

 strained models and note that it can be useful to
 revamp an unbalanced table into a balanced one

 with missing values. These comments serve merely
 to emphasize the variety of approaches available
 through MCMC.

 4.2 Results for the First Seven Periods

 Here we describe the results of fitting the model
 given by (4.1) and (4.2) to the prostate cancer data
 in the first seven time periods. Thus, the first seven

 columns of Table 2 provide the observed nega-

 tive log-odds and summarize the corresponding
 marginal posterior distributions for the risk of death
 among nonwhite males in the United States, classi-
 fied by age group, period and, implicitly, cohort.
 The fit is the product of a single Gibbs-Metropolis
 run of length 275,000 cycles, discarding the first

 25,000 and storing every 50th sample thereafter.

 Acceptance rates for the (jj's vary between 40 and
 56%. The Monte Carlo standard errors for the pos-
 terior means, assessed via the initial sequence esti-
 mators in Geyer (1992), all lie between 1 and 2% of
 the corresponding posterior standard deviations. In
 this case, because we make extensive use of large-
 block Gibbs, via Cholesky, so that the successive
 samples are close to independent, almost the same

 accuracy could be achieved from a considerably
 shorter run length by decreasing the sampling
 interval.

 Not surprisingly, given the number of parame-
 ters in the model, there is good agreement between
 the observed values and the posterior means in
 Table 2. In general, the agreement is much closer

 than that in Breslow (1984), since the fit there
 demands an additive row plus column decomposi-
 tion and also ignores the (admittedly rather incon-
 sequential) period effects. Note that the frequentist
 fit must provide exact fits to the (1, 7) and (7, 1)
 cells, which correspond to the single observations
 on cohorts 1 and 13.

 The first seven columns of Table 3 present the
 observed mortality rates and compare them with
 the corresponding 80% pointwise credible intervals.
 All the intervals, except that for age group 7 and

 period 3, straddle the observed values. As regards

 the necessity for including the zij's, the posterior
 probability that all fall in the range (-0.1, 0.1) is
 only 0.06, even though the corresponding posterior
 means all lie in this interval. As an informal com-

 parison, if the zij's are omitted from the model, 30
 of the 49 observed mortality rates fall outside the
 corresponding 80% credible intervals. The im-
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 BAYESIAN COMPUTATION AND STOCHASTIC SYSTEMS 17

 TABLE 2

 Observed negative log-odds and means and standard deviations of the corresponding marginal posterior

 distributions, using only the data in the first seven periods

 Period

 Age group 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980

 Observations

 50-54 7.44 7.06 7.03 6.94 7.19 7.35 7.39 7.50 7.69 7.72

 55-59 6.69 6.56 6.22 6.18 6.22 6.45 6.40 6.40 6.48 6.60

 60-64 6.09 6.00 5.84 5.45 5.62 5.46 5.55 5.59 5.52 5.64

 65-69 5.77 5.57 5.33 5.20 4.92 4.90 4.92 4.90 4.97 4.90

 70-74 5.44 5.21 4.96 4.73 4.53 4.47 4.38 4.23 4.20 4.30

 75-79 5.11 4.87 4.61 4.42 4.32 4.17 4.03 3.88 3.71 3.87

 80-84 5.16 4.81 4.71 4.40 4.07 4.02 3.85 3.71 3.65 3.35

 Posterior means

 50-54 7.39 7.11 7.04 6.97 7.16 7.30 7.38 7.50 7.62 7.74

 55-59 6.70 6.54 6.25 6.19 6.22 6.41 6.41 6.57 6.69 6.81

 60-64 6.12 5.99 5.82 5.48 5.59 5.47 5.56 5.73 5.85 5.97

 65-69 5.77 5.56 5.33 5.19 4.93 4.90 4.92 5.02 5.13 5.25

 70-74 5.43 5.20 4.96 4.73 4.54 4.47 4.38 4.37 4.47 4.58

 75-79 5.15 4.90 4.63 4.43 4.32 4.17 4.02 3.91 3.91 4.01

 80-84 5.12 4.83 4.65 4.37 4.09 4.01 3.85 3.66 3.60 3.59

 Posterior standard deviations

 50-54 0.05 0.05 0.05 0.04 0.04 0.05 0.05 0.16 0.27 0.42

 55-59 0.05 0.04 0.04 0.04 0.03 0.03 0.03 0.11 0.20 0.32

 60-64 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.10 0.16 0.26

 65-69 0.04 0.04 0.03 0.03 0.02 0.02 0.02 0.09 0.15 0.23

 70-74 0.04 0.04 0.03 0.03 0.02 0.02 0.02 0.10 0.15 0.23

 75-79 0.05 0.04 0.04 0.03 0.03 0.02 0.02 0.10 0.15 0.23

 80-84 0.08 0.06 0.05 0.04 0.03 0.03 0.03 0.10 0.15 0.23

 proved coverage of the extended model is partly

 because the means necessarily provide a better fit
 but importantly also because of an increase in the

 posterior standard deviations.

 4.3 Prediction

 We now consider predictions for the three addi-
 tional five-year periods 8, 9 and 10. One possibility
 is to treat the corresponding 21 cells as missing
 data and to proceed exactly as in Section 4.1. A
 drawback of this approach is that it is necessary to
 decide in advance on the set of cells U for which
 predictions are required. An alternative, which we
 first describe in terms of a single run, is to ignore

 entirely the U-cells when updating the remainder T
 and then, at the end of each cycle, produce predic-
 tions for the U-cells given the current values in the
 T-cells. This process employs standard forward pre-
 diction on each cycle, which must of course be valid.
 Formally, it happens also to fit into the framework

 of Appendix 2, with the same use of T and U and
 with T U U = S =M. A major advantage of this
 procedure is that it can be replaced by two runs,
 the first of which employs standard MCMC updates
 and storage for the T-cells, to be followed by a
 U-cell simulation, with forward prediction from the

 stored T-cell values on each cycle. This avoids the
 need to specify U in advance and also usually
 reduces the computational load. In addition, it is
 statistically more efficient because sampling for the
 dataless U-cells is now carried out from the exactly
 correct conditional distribution given the rest of the
 parameters. The point here is that one should al-
 ways use direct simulation, as in (2.1), whenever it
 is easy to carry out.

 In the present context, the aim is to predict over
 the three periods J + 1, J + 2 and J + 3. Thus,
 we take the tth stored cycle from the basic I x J
 simulationand,fori = 1,..., I, j= J, J+ 1,J+2
 and k = K, K + 1, K + 2, generate

 +(+O1 N(2 q(t) - (t), 1/A(t)),

 (k+l) N(2 (p(t) - k(t-) 1 lv(t)))

 1'jt+ 1 N(O, /())

 Yi(,j+ 1 (ni,j+1, Pi, j+1),

 where ni j+l is the relevant number at risk and
 Py2i( is calculated from the corresponding (/)i.
 Note the linear extrapolation implied by the locally
 quadratic prior and the way in which additional
 variability is produced as time progresses. Also, the
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 18 BESAG, GREEN, HIGDON AND MENGERSEN

 TABLE 3

 Observed mortality rates and corresponding 80% credible intervals and 80% simultaneous credible surfaces
 for probability of death x 100,000, using only the data in the first sevent periods

 Period

 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980

 Age Group 50-54

 lower surface 39 26 17
 10% points 58 77 83 89 73 63 58 45 35 26
 observed 59 85 88 97 75 64 62 55 46 44
 90% points 66 87 93 99 82 71 66 67 69 74
 upper surface 79 90 112

 Age Group 55-59

 lower surface 109 80 53
 10% points 115 136 183 195 191 156 157 121 97 74
 observed 124 141 198 206 199 158 167 165 153 135
 90% points 130 152 201 214 208 171 171 160 160 165
 upper surface 179 194 226

 Age Group 60-64

 lower surface 260 202 143
 10% points 208 239 284 401 358 406 371 286 235 186
 observed 226 247 290 427 361 425 389 373 398 355
 90% points 233 263 311 433 387 434 396 366 353 354
 upper surface 404 413 458

 Age Group 65-69

 lower surface 532 426 315
 10% points 296 367 463 536 699 719 706 585 487 394
 observed 310 378 480 548 725 742 725 738 692 741
 90% points 328 403 501 575 742 759 745 739 706 696
 upper surface 812 820 889

 Age Group 70-74

 lower surface 1012 813 622
 10% points 410 523 671 842 1025 1107 1206 1110 941 776
 observed 432 541 694 878 1069 1133 1235 1439 1473 1344
 90% points 460 576 728 903 1088 1168 1267 1417 1370 1338
 upper surface 1564 1601 1717

 Age Group 75-79

 lower surface 1589 1414 1095
 10% points 538 698 917 1135 1271 1475 1717 1743 1640 1361
 observed 600 764 990 1190 1310 1517 1753 2023 2380 2035
 90% points 616 780 1007 1227 1361 1564 1812 2203 2364 2338
 upper surface 2417 2782 3007

 Age Group 80-85

 lower surface 2021 1907 1639
 10% points 538 741 893 1185 1576 1709 2015 2217 2222 2041
 observed 568 809 891 1218 1686 1771 2082 2381 2530 3387
 90% points 656 854 1007 1307 1718 1840 2149 2828 3210 3509
 upper surface 3095 3724 4469

 Y(3 +l's need to be computed only if predictions of
 numbers of deaths are required, rather than merely
 predicted risks. This contrasts with "missing data"
 implementations.

 The observed values and summaries of the pre-
 dictive distributions for periods 8, 9 and 10 are
 given in the final three columns of Tables 2 and 3.
 There are large increases in the posterior standard
 deviations of the log-odds, as expected, but, despite
 this, 9 of the 21 observed values lie outside the
 corresponding 80% credible intervals. The denomi-
 nator values are sufficiently large that this remains

 the case even if one predicts numbers of deaths,
 rather than risks.

 In fact, the above summary is perhaps a little
 unfair. Only 2 of the 21 observed values fall outside
 the 90% intervals and, additionally, one should not
 expect too much from many highly dependent indi-
 vidual forecasts. Instead, one can make simultane-
 ous credibility statements by constructing pairs of
 "surfaces" within which one believes the 7 x 3 table
 of risks to lie. We describe one technique in Section
 6, and here we merely report some results. In par-
 ticular, Table 3 includes the 80% surfaces and
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 BAYESIAN COMPUTATION AND STOCHASTIC SYSTEMS 19

 these embrace all the observed mortality rates. The
 same holds for the 70% surfaces but those at 60%
 fail in age group 3, period 9.

 4.4 Concluding Remarks

 We close this section with a few remarks that

 may have wider methodological ramifications, be-
 yond this data set. First, we have not discussed the

 sensitivity of our results to changes in the prior

 distribution and in the likelihood. Here, we merely
 note that investigations can be carried out along

 the same lines as in Section 5.5, either by impor-
 tance sampling or, when this is seen to fail, by
 rerunning the algorithm. For example, one could
 replace the Gaussian components in the prior by
 heavier-tailed distributions or, as a more radical
 structural modification, substitute mixtures of tf
 distributions, with hyperpriors on the f's. Both
 variants have been used on the passive smoking
 data (Besag, Higdon and Mengersen, 1994), ac-
 knowledging the strong conflicts between the re-

 sults from some of the studies. In Section 5.6, we
 illustrate corresponding modifications in both the
 prior and the likelihood but in the context of agri-
 cultural field experiments.

 Arnother possible modification is to replace the
 locally quadratic priors by the locally linear ones

 used in the next section. In fact, this produces a
 slightly better fit to the data for the first seven
 periods but is unappealing for prediction, because it
 entirely ignores any trends in the period and cohort
 effects in making forecasts. Note that this is not the
 case when the locally linear prior has an interpola-
 tive role. In the overall context of the paper, tempo-
 ral prediction requires more ambitious models than
 spatial interpolation.

 There is sometimes interest in Bayesian image
 analysis in reconstructing a scene at a coarser or
 finer pixel resolution than the data (e.g., Gidas,
 1989; Jubb and Jennison, 1991). The corresponding
 procedure is of some methodological interest in the
 present context; for example, one might replace the
 five-year averages by annual populations. In data
 sets for which annual mortality data are not avail-
 able, one could still carry out an MCMC analysis
 involving a multinomial missing values procedure.
 There are some delicate issues here, concerning
 approximate self-consistency of prior distributions
 at different scales.

 We make two final points. First, we suspect that
 many readers would prefer a somewhat different
 formulation from the one we have adopted. Second,
 we anticipate that analytical approximations should
 work well on our model and on others similar to it,
 especially for the present data where there appears
 not to be any significant multimodality in the pos-

 terior distribution. Nevertheless, we surmise that,
 in the first instance, MCMC will still provide a
 ready means of analysis and, in the second, that it
 is able to address questions that would otherwise
 remain unanswered.

 5. BAYESIAN FORMULATION AND

 ANALYSIS OF VARIETY TRIALS

 5.1 Introduction

 Variety trials enable comparisons to be made
 between different varieties of the same or similar
 crops and embrace a substantial proportion of agri-
 cultural field experiments. They are used by plant
 breeders in developing new lines and by statutory

 authorities in drawing up recommendations to the
 farming community. Experiments consist of a large
 number of rectangular plots (of land), each of which
 is devoted to a particular variety. For example,

 Figure 1 shows the spatial layout and the plot
 yields (standardized to have unit crude variance) in
 a final assessment trial for 75 varieties of spring
 barley. It is fairly typical in that the plots are laid
 out in a few complete replicates, each of which
 forms a column of long, narrow plots, abutting one
 another along the longer side. The variety allocated
 to each plot is chosen at random, within the con-
 straints of the blocking structure of the experimen-
 tal design. This structure may be quite sophisti-
 cated, as in two-dimensional balanced lattice
 squares (Kempthorne, 1952, Chapter 24), still
 widely used in South Africa, or in the less demand-
 ing a-designs of Patterson and Williams (1976),
 exemplified by the layout in Figure 1; but often
 nothing more complicated than a randomized com-
 plete-blocks design is chosen. In the randomization
 framework espoused by R. A. Fisher, the design and
 the analysis should mirror one another. Below,
 we enlarge on some issues of methodological con-
 cern, particularly those that involve variations in
 fertility.

 The usual measurement in each plot is the yield
 at harvest, as in Figure 1. Yield may be influenced
 by several external factors, particularly weather
 and "plot fertility." Provided the former can be
 assumed to have a uniform effect, it need not be
 considered further in making comparisons between
 varieties. Otherwise, there is a need for repeat
 experiments, possibly at different sites. Plot fertil-
 ity represents the notion that the same variety
 harvested on different plots would not return the
 same yield, quite apart from any variation in the
 seed itself. Fertility effects are not measured di-
 rectly but are generally acknowledged to be sub-
 stantial and inherently spatial. Fisher (1928, page
 229) states: "the peculiarity of agricultural field
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 20 BESAG, GREEN, HIGDON AND MENGERSEN

 Variety Yield Variety Yield Variety Yield

 57 9.29 49 7.99 63 11.77

 39 8.16 18 9.56 38 12.05

 3 8.97 8 9.02 14 12.25
 48 8.33 69 8.91 71 10.96

 75 8.66 29 9.17 22 9.94
 21 9.05 59 9.49 46 9.27

 66 9.01 19 9.73 6 11.05
 12 9.40 39 9.38 30 11.40

 30 10.16 67 8.80 16 10.78

 32 10.30 57 9.72 24 10.30

 59 10.73 37 10.24 40 11.27

 50 9.69 26 10.85 64 11.13
 5 11.49 16 9.67 8 10.55

 23 10.73 6 10.17 56 12.82

 14 10.71 47 11.46 32 10.95
 68 10.21 36 10.05 48 10.92
 41 10.52 64 11.47 54 10.77

 1 11.09 63 10.63 37 11.08

 64 11.39 33 11.03 21 10.22
 28 11.24 74 10.85 29 10.59

 46 10.65 13 11.35 62 11.35

 73 10.77 43 10.25 5 11.39
 37 10.92 3 10.08 70 10.59

 55 12.07 53 10.25_ 13 11.26
 19 11.03 23 9.57 1 1 11.79

 10 11.64 62 11.34 44 12.25

 35 11.37 52 10.19 36 12.23
 26 10.34 12 10.80 52 10.84
 17 9.52 2 10.04 60 10.92

 71 8.99 32 9.69 68 10.41
 8 8.34 22 9.36 3 10.96
 62 9.25 42 9.43 19 9.94

 44 9.86 72 11.46 67 11.27

 53 9.90 73 9.29 59 11.79

 74 11.04 25 10.10 2 11.51

 20 10.30 45 9.53 75 11.64

 56 11.56 15 10.55 27 ? ? ?
 29 9.69 35 11.34 43 9.78

 2 10.68 66 11.36 51 8.86

 47 10.91 5 10.88 10 10.28
 11 10.05 56 11.61 35 12.15

 38 10.80 46 10.33 74 10.36

 65 10.06 71 10.53 66 9.59

 13 10.04 51 8.67 34 10.53

 31 10.50 21 9.56 18 11.26
 40 9.51 1 9.95 50 10.37

 4 9.20 31 11.10 42 10.10
 67 9.74 11 10.11 1 9.95

 22 8.84 41 9.36 58 9.80

 49 9.33 61 10.23 26 10.58

 58 9.51 55 11.38 41 9.31
 43 9.35 14 11.30 25 9.29

 7 9.01 44 10.90 33 10.03

 25 10.58 34 10.97 9 9.49
 61 11.03 54 12.22 17 11.52
 16 9.89 24 10.10 57 12.24
 52 11.39 4 11.22 65 11.64

 70 11.24 65 10.01 49 10.74

 34 12.18 75 10.29 73 10.29
 42 10.21 38 10.95 7 10.25
 24 11.08 17 9.66 23 11.39
 33 11.05 68 9.31 72 13.34
 51 10.29 7 8.84 55 12.73
 60 10.57 27 10.64 31 12.62
 69 10.42 58 9.45 39 10.19

 15 10.49 48 9.66 47 11.61
 6 10.00 28 9.85 15 10.52
 63 9.23 60 9.24 20 9.07

 54 10.57 30 . 10.11 61 10.76

 18 10.27 70 9.63 28 9.91

 45 8.86 20 9.04 53 10.17
 72 9.45 9 8.43 69 8.68
 9 8.03 40 10.97 45 8.74
 36 9.22 50 8.98 12 9.15
 27 8.70 10 9.88 4 9.39

 FIG. 1.

 experiments lies in the fact, verified in all careful
 uniformity trials, that the area of ground chosen for
 the experimental plots 'may be assumed to be
 markedly heterogeneous, in that its fertility varies
 in a systematic, and often a complicated manner
 from point to point." Here, a uniformity trial is one

 in which the same variety is assigned to every plot,

 so that patterns of fertility can be more easily
 discerned. In fact, patterns are generally evident
 even when varieties are different; the graphs of raw
 yields for the spring barley trial in the top panel of
 Figure 2 are by no means untypical.

 Consequently, it is highly desirable to employ a
 sophisticated design or an analysis that takes ex-
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 plicit account of fertility, or some combination of

 these two. For example, a-designs subdivide repli-
 cates into small blocks, within each of which fertil-
 ity is assumed to be constant. The basic analysis

 then seeks to eliminate fertility effects by only
 using intrablock differences in yields. This provides
 one reason for adopting long, narrow plots, the
 other being ease of management practice, which
 also precludes the use of very small plots. Addition-
 ally, in an a-design, varieties are assigned to blocks
 so as to equalize approximately the variance of
 variety contrasts; it is generally impracticable to
 ensure exact balance, because this would require
 far too high a level of replication.

 In the above discussion, emphasis rests on spa-
 tial design, on which there is an enormous litera-
 ture. In the last 15 years, there has been acknowl-
 edgment, particularly in the United Kingdom and
 in Australia, that the adoption of model-based spa-
 tial analysis, even in a randomized complete blocks
 experiment, can recover most, if not all, of the
 accuracy and precision obtained classically from a
 very sophisticated design. In a linear layout, the

 simplest plausible model for plot fertilities is the
 Gaussian random walk of Section 3, first imple-

 mented implicitly by J. N. Papadakis, a distin-
 guished Greek agronomist and soil scientist, in the
 1920's and explicitly by Besag and Kempton (1984,
 1986). In such a formulation, the conditional expec-

 tation of fertility if on plot i, given the qij's on all
 other plots, is the mean of those qij's on plots adja-
 cent to it. Note here that Papadakis subsequently
 adopted an attenuated version of the model (Bart-
 lett, 1938, 1978) but eventually reverted to the
 original form; see Papadakis (1984) for a history
 and further references. An alternative, proposed by
 Green, Jennison and Seheult (1985), is to assume
 that second, rather than first, differences in fertil-
 ity are uncorrelated, again as described in Section
 3; see also Section 4. Note that, in either model, the
 only unknown parameter is the variance of the first
 or second differences.

 A more radical approach, adopted by Gleeson and
 Cullis (1987), is to employ Box-Jenkins ARIMA
 methodology for identification of a particular fertil-
 ity model. This can result in quite complicated
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 22 BESAG, GREEN, HIGDON AND MENGERSEN

 formulations and the need to estimate several addi-
 tional parameters. Our view is that this shifts the
 emphasis too far toward a model-fitting exercise
 and may lead to overfitting, in that genuine variety
 effects can be "washed out" into the fertility model.

 Our preference, in the context of a Bayesian analy-
 sis, is to permit flexibility in the distributional
 assumptions, as described in Sections 5.5 and 5.6.

 Other references to spatial analysis of field ex-
 periments include Wilkinson, Eckert, Hancock and
 Mayo (1983), Wilkinson (1984), Green (1985),
 Williams (1986), Besag and Seheult (1989), Martin
 (1990), Baird and Mead (1991), Zimmerman and
 Harville (1991), Cullis, McGilchrist and Gleeson
 (1991) and Kempton, Seraphin and Sword (1994).
 All of these adopt a frequentist or data-analytic

 approach to the inferential tasks. Bayesian view-
 points are discussed briefly by Smith (1978) and
 Besag and Green (1993, Section 6) and at length,
 with examples, by Besag and Higdon (1993) and in
 Taplin and Raftery (1994). The second list is sur-
 prisingly short since the Bayesian paradigm seems
 ideally suited to such important areas as ranking
 and selection in variety trials. For example, one can

 produce a posterior probability distribution for the

 variety that is best, or determine the smallest sub-
 set that contains the best variety with prescribed
 probability; and the difficulties of making multiple
 comparisons, which bedevil any frequentist ap-
 proach, do not arise.

 In Sections 5.2 and 5.3, we develop a quite widely
 applicable Bayesian formulation for the analysis of
 field experiments, implemented via MCMC. Since
 this extends to more complicated experiments that
 have a treatment structure, such as factorial de-
 signs, it is convenient initially to address a wider
 class of problems and then specialize to the case in
 which treatments and varieties coincide. Section 5.4
 provides a basic analysis of the spring barley trial,
 and Sections 5.5 and 5.6 consider sensitivity analy-
 sis and extensions of the basic formulation.

 5.2 Basic Bayesian Formulation

 We assume that the experimental layout is in r
 separate columns, as for example in Figure 1, with
 plots i indexed in some convenient manner. The
 observed yield and the (fixed) unknown fertility in
 plot i are denoted by yi and qi,, respectively. We
 write T for the vector of m treatment effects, among
 which particular contrasts are the main focus of the
 experiment, and T for the corresponding design
 matrix. Then the simplest model for the random
 vector y is, perhaps after transformation,

 (5.1) y I T, q, Ak --4/(q, + TT, In/A,),

 where n is the total number of plots, In is the
 n x n identity matrix and Ay is the unknown preci-
 sion of the yr's. Of course, one might wish to replace
 (5.1) by a robust or resistant alternative (cf. Section
 5.6) or, in particular applications, by a binomial or
 Poisson distribution.

 The formulation is completed by specifying (pre-

 sumably) independent prior densities for Ay, T and
 ti. Obvious choices are Ay F(a, b), where a and b
 are specified, and, in experiments such as variety
 trials that have no special treatment structure,

 T 'XA'(O, Im/Ar), with A- 0 or AT F(c, d). How-
 ever, there will often be information from previous
 experiments that can be incorporated into these
 distributions. At the basic level, we represent our
 views about the plot fertilities in separate columns
 by independent Gaussian random walks, each with

 precision parameter A, , F(g, h), so that

 (5.2) 7T(i I A.,) cc A, 2 exp{ - A E (i-A 3)}
 i -j

 where the summation is over pairs of adjacent plots

 i -- j; thus, each qii occurs in ni terms, where n -= 1
 or 2 is the number of plots adjacent to i. We men-
 tion two-dimensional fertility adjustment in Section
 5.6 but usually there is little information to connect
 the columns, because of their physical separation
 and/or the standard use of long, narrow plots;
 indeed, one might want to allow separate A,'s
 in some contexts. Note that the impropriety in

 (5.2) permits an arbitrary level of fertility in each
 column and corresponds to the usual frequentist
 practice of removing replicate effects.

 Of course, it is unrealistic to expect a spatial
 "model" to provide anything more than a crude
 representation of the true fertility process. How-
 ever, this is generally not critical, first because it is
 contrasts between the replicated treatment effects
 rather than the individual plot fertilities them-
 selves that are of primary concern, and second
 because the purpose of such a model is one of
 interpolation rather than extrapolation. Again, we
 note that spatial formulations can often be less
 ambitious than those in time-series analysis.

 5.3 Computation

 It is convenient to rewrite the summation in (5.2)
 as qJTWqJ, where W is the n X n matrix with (i,j)
 element

 ni, i =j,

 wij= -1, ij,
 { 0, otherwise.

 Thus, W is block diagonal, with r identical blocks.
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 BAYESIAN COMPUTATION AND STOCHASTIC SYSTEMS 23

 It then follows that the posterior density for T, if
 and A, given y, is proportional to

 An/2 exp(- Ay(y - ifi- TT)T(y - if- TT)}

 *AAn/2 exp{ - y ATT}

 (5.3) *A,2 exp{-2A1 q,OTWi}

 *A'- 1 exp( -bAy AC exp( - d A

 *- l exp(-fAq,),

 with appropriate modification if Ar 0. Hence,

 (5.4) Tr 1i, A, y ./41(AYQ-;TT(y - ' ) Q-1

 where QT = AyTTT + AnIm, and

 (5.5) i/1 T,A,y) y M(Ay Q1z Q-1))
 where z = y - TT and Q4, = AYIn + A,,,W. The con-
 ditionals for the precisions are mutually indepen-

 dent, with (when A7 T 0)

 (5.6) A I r(a + 2n, b + 2(z-f)T(Z- ))

 (5.7) Al ... ~ (c + lm,d + 1 TTT),

 (5.8) A, i * * rF(g + n,h + I qT Wi/).

 For simulating from the posterior distribution, the
 results (5.4)-(5.8) are ideally suited to a time-
 reversible, cyclic Gibbs sampler, with three compo-
 nents T, i/ and A updated in random order within
 each cycle. The updating of r and i/ can be carried
 out via Cholesky decompositions, with the block

 diagonal structure of Qq, easing the i-step. Note
 that any missing yi's merely add a fourth compo-
 nent to the Gibbs sampler, in which corresponding
 values are generated from (5.1). The variability in

 these yi's is inherited by the relevant treatment or
 variety effects without any further change to the
 algorithm.

 For the prior (5.2), fertilities can also be consid-
 ered individually. It follows immediately from (5.3)
 that

 (5.9) iI ./|Aqniqf, + Ayzi 1
 AO ni + AY Aqni + AY

 where i/' is the current mean fertility of the plots
 adjacent to i. The distribution (5.9) is intuitively
 appealing, having a mean that combines the infor-
 mation in plot i with that in the neighbors, accord-

 ing to the values of n j, AY and A,J, Also, the ii's in
 alternate plots are conditionally independent, so
 that, instead of (5.5), one can carry out two steps, in
 each of which the samples are drawn from indepen-
 dent Gaussian distributions. However, the advan-
 tage of (5.5) is that if T and A have the correct limit
 distribution, then so does i, whereas this is not

 necessarily the case in (5.9), which depends also on

 i. Thus, although an algorithm based on (5.9) runs
 much faster per cycle, it may take more cycles to
 converge, as indeed we have found in practice. We
 can suggest no clear winner at this stage.

 Note that, when A7T 0, the mean in (5.4) is the
 ordinary least squares estimate of T, based on the
 current value of y - i/. The analysis is then addi-
 tive; that is, if y is replaced by y + TTO, for any
 fixed T0, then the posterior density of T - T0, i/ and
 A is proportional to (5.3), omitting terms that in-

 volve AT. This permits a rigorous assessment of
 performance to be made, model-free except for the
 assumption that treatments act additively on yields,
 by using data from uniformity trials with superim-
 posed dummy treatments (see, e.g., Besag and
 Kempton, 1986, and Zimmerman and Harville,

 1991, in a non-Bayesian context). A nonzero AT
 provides the usual shrinkage of T toward zero.
 When TTT is diagonal, the components of T in (5.4)
 are conditionally independent, so that, for example,
 in variety trials, the full conditional for the effect of
 variety k takes the form

 Tk I A + Ay rk AT + Ayrk)

 where uk is the current mean value of yi - i for
 the rk plots receiving variety k; when AT -0, the
 mean reduces to uk itself. Usually, rk = r
 but sometimes there is additional replication for a
 standard variety, with which the others are to be
 compared.

 5.4 Analysis of a Spring Barley Trial

 The Scottish Agricultural Colleges are responsi-
 ble for many of the final assessment trials on spring
 barley and winter wheat in the United Kingdom.
 The data in Figure 1 are extracted from a catalog of
 10 such trials, kindly supplied to us with the inten-
 tion of covering a wide range of experimental and
 environmental conditions. Each trial conformed to
 an a-design, with the number of varieties between
 17 and 75. All but one were in three replicates; two
 had a missing value. We have applied exactly the
 same method of analysis to each of the experi-
 ments, after first rescaling the yields to have crude
 variance unity. The data in Figure 1 are perhaps
 the most challenging in the catalog: there are 75
 centered variety effects and 225 fertilities to be
 estimated; there is no clear winner, so that proba-
 bility statements are especially important; variety
 27 has a missing value in the third replicate; and,
 as is also true in the other trials, there is strong
 evidence of substantial variation in fertility within
 replicates.
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 24 BESAG, GREEN, HIGDON AND MENGERSEN

 Figure 2 shows three different decompositions of
 the yields into posterior means of variety effects,
 fertilities and residuals. Here, we concentrate on
 the topmost graphs, which correspond to the basic
 formulation (5.3). The results were obtained using a
 reversible Cholesky version of the Gibbs sampler,
 with a run length of 6,000 cycles, of which the first
 1,000 were discarded. The run was initiated by a

 simple randomized complete blocks (RCB) decom-
 position of the yields, which imposes constant fertil-
 ity effects within columns. Figure 3 shows the
 progress of the log-posterior density (up to a con-
 stant) for the entire run, split into successive
 batches of 500. Note that the RCB estimates have
 much larger posterior density than typical samples
 from (5.3). In practice, we look at many other simi-
 lar graphs in assessing convergence.

 Table 4 provides estimates of centered variety
 effects under several models and methods of analy-
 sis, with the RCB and RevG columns referring to
 the two analyses above. The MCMC standard er-
 rors for the RevG posterior means are about 0.007
 (slightly larger for variety 27). The 90% credible
 intervals for the A's are as follows:

 AY X (5.1,12.8); A,, , (4.9, 11.5); AT (2.8, 5.8).

 All point estimates were within acceptable Monte
 Carlo errors of a previous run of length 12,000
 cycles, discarding the first 2,000, but based on (5.9)
 rather than (5.5).

 In practice, interest centers on variety differ-

 ences. Here the typical width of a 90% credible
 interval is about 1.2, with negligible Monte Carlo

 standard error. The top 15 varieties under RevG,
 ranked by posterior means, can be found in Table 5
 but, in fact, 90% credible intervals for differences
 among any of the top 11 straddle zero. Thus, the
 experiment is somewhat inconclusive. If we wish to
 select the best variety, under the conditions of the
 experiment, this is variety 56 with posterior proba-
 bility 0.32 and either 56 or 35 with probability 0.51;
 in each case, the Monte Carlo standard error is
 0.01. Alternatively, variety 56 is among the top five
 with posterior probability 0.82. Were there an in-
 tention to perform a subsequent, smaller, compara-
 tive trial, one would need to carry over the top 6, 8
 or all 15 varieties in the RevG column of Table 5 to
 have posterior probability 0.90, 0.95 or 0.99 of in-
 cluding the best. Each of the above probabilities is
 the relative frequency of the corresponding event in
 the MCMC run. Incidentally, not all the data sets
 in the catalogue are so vague; for example, in one of

 I-7

 0~

 * . . . * * . *G. 3
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 TABLE 4

 Variety estimates for several models and analyses

 Var RCB RevG L1MH t? - t? RevU BK Var RCB RevG L1MH t? - t? RevU BK

 1 -0.01 -0.10 -0.10 -0.10 -0.18 -0.15 39 -1.09 -0.44 -0.42 -0.45 -0.51 -0.48

 2 0.41 0.15 0.16 0.15 0.23 0.19 40 0.25 0.46 0.44 0.45 0.60 0.70

 3 -0.33 0.02 -0.01 0.01 -0.04 0.07 41 -0.60 -0.46 -0.48 -0.46 -0.61 -0.48

 4 -0.40 0.16 0.14 0.17 0.26 0.35 42 -0.42 -0.57 -0.54 -0.57 -0.79 -0.92
 5 0.92 0.37 0.37 0.38 0.54 0.45 43 -0.54 -0.44 -0.41 -0.42 -0.67 -0.62

 6 0.07 0.04 0.03 0.03 0.06 0.11 44 0.67 0.30 0.32 0.31 0.49 0.46

 7 -0.97 -0.90 -0.90 -0.92 -1.33 -1.29 45 -1.29 -0.43 -0.45 -0.44 -0.56 -0.46
 8 -1.03 -0.40 -0.41 -0.41 -0.50 -0.45 46 -0.25 -0.59 -0.58 -0.56 -0.80 -0.83
 9 -1.69 -0.91 -0.84 -0.88 -1.20 -1.19 47 0.99 0.73 0.74 0.74 1.03 1.10

 10 0.27 0.24 0.22 0.25 0.35 0.29 48 -0.70 -0.14 -0.17 -0.15 -0.20 -0.12

 11 0.32 0.07 0.07 0.08 0.23 0.25 49 -0.98 -0.49 -0.50 -0.49 -0.78 -0.68

 12 -0.55 0.10 0.10 0.10 0.13 0.19 50 -0.66 -0.50 -0.45 -0.49 -0.62 -0.77

 13 0.55 0.23 0.25 0.24 0.40 0.36 51 -1.06 -0.97 -0.95 -0.96 -1.34 -1.29
 14 1.09 0.41 0.39 0.41 0.60 0.57 52 0.47 -0.12 -0.11 -0.13 -0.17 -0.28
 15 0.18 0.11 0.12 0.12 0.16 0.26 53 -0.23 0.12 0.11 0.12 0.15 0.19

 16 -0.22 -0.45 -0.41 -0.44 -0.57 -0.62 54 0.85 0.61 0.59 0.59 0.84 0.83
 17 -0.10 0.00 -0.03 -0.01 -0.03 0.01 55 1.73 0.77 0.76 0.78 1.11 1.04
 18 0.03 0.55 0.55 0.56 0.70 0.66 56 1.66 1.00 1.01 1.01 1.34 1.22
 19 -0.10 -0.24 -0.24 -0.23 -0.27 -0.34 57 0.08 0.39 0.39 0.38 0.50 0.51
 20 -0.87 -0.53 -0.50 -0.51 -0.64 -0.71 58 -0.75 -0.30 -0.30 -0.30 -0.52 -0.45
 21 -0.72 -0.25 -0.28 -0.26 -0.34 -0.27 59 0.34 0.24 0.27 0.24 0.30 0.18
 22 -0.96 -0.60 -0.62 -0.62 -0.88 -0.83 60 -0.10 -0.27 -0.26 -0.27 -0.44 -0.47
 23 0.23 -0.27 -0.27 -0.27 -0.34 -0.39 61 0.34 0.31 0.32 0.32 0.39 0.44
 24 0.16 -0.40 -0.37 -0.39 -0.50 -0.58 62 0.31 0.39 0.37 0.38 0.50 0.55
 25 -0.34 -0.14 -0.16 -0.14 -0.33 -0.20 63 0.21 -0.19 -0.18 -0.21 -0.16 -0.27
 26 0.25 0.43 0.44 0.45 0.55 0.60 64 1.00 0.35 0.34 0.34 0.48 0.49
 27 -0.45 0.26 0.25 0.25 0.25 0.30 65 0.23 -0.05 -0.03 -0.03 0.01 -0.05
 28 0.00 0.04 0.04 0.04 0.02 -0.01 66 -0.35 -0.04 -0.05 -0.06 0.02 0.07
 29 -0.52 -0.28 -0.30 -0.30 -0.34 -0.35 67 -0.40 -0.06 -0.09 -0.06 -0.09 -0.01
 30 0.22 0.32 0.33 0.32 0.39 0.32 68 -0.36 -0.44 -0.48 -0.46 -0.67 -0.59
 31 1.07 0.84 0.79 0.84 1.20 1.26 69 -1.00 -0.38 -0.35 -0.37 -0.53 -0.55
 32 -0.02 -0.09 -0.09 -0.09 -0.10 -0.16 70 0.15 -0.17 -0.15 -0.17 -0.21 -0.28
 33 0.37 -0.02 0.02 0.00 -0.13 -0.13 71 -0.18 -0.06 -0.08 -0.07 -0.15 -0.12
 34 0.89 0.34 0.35 0.34 0.48 0.43 72 1.08 0.86 0.88 0.87 1.07 1.02
 35 1.29 0.90 0.91 0.88 1.25 1.20 73 -0.22 -0.61 -0.62 -0.61 -0.88 -0.86
 36 0.17 0.16 0.18 0.17 0.26 0.21 74 0.42 0.22 0.21 0.21 0.37 0.24
 37 0.41 0.15 0.12 0.14 0.23 0.29 75 -0.14 0.10 0.09 0.09 0.13 0.15
 38 0.93 0.54 0.53 0.54 0.76 0.71

 Var Variety number
 RCB Standard classical analysis
 RevG Reversible Gibbs with Gaussian prior for T
 L1MH Metropolis-Hastings with Li fertility increments

 - t? t? likelihood with t? fertility increments

 RevU Reversible Gibbs with uniform prior for T
 BK Classical extended first differences analysis

 the winter wheat trials, there is a single variety
 that is best with posterior probability 0.99.

 5.5 Sensitivity Analysis

 The above statements all assume that the formu-

 lation is correct. Thus, we need to address some
 aspects of sensitivity analysis, following the ideas
 described in Appendix 3 and here focusing on as-
 sumptions in the prior. First, there is the choice of
 constants a, b, c, d, g and h. In our base model, we
 have always employed a = c = g = 1 and b = d =

 h = 0.005, after first standardizing the yields. The
 value 0.005 is a potential source of instability and
 was first changed to 0.0005. Importance sampling,
 with respect to the original run, produced negligible
 changes in the variety estimates and an acceptable
 maximum weight of 0.00023 against the average
 0.0002. In the event, we did check this conclusion
 by rerunning at the new setting. Second, we
 changed the values of b, d and h to 0.05, again
 with negligible effect.

 A second type of modification is structural and
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 TABLE 5

 Rankings of varieties under several analyses

 Rank RCB RevG L1MH t? - t? RevU BK

 1 55 56 56 56 56 31

 2 56 35 35 35 35 56

 3 35 72 72 72 31 35

 4 14 31 31 31 55 47

 5 72 55 55 55 72 55

 6 31 47 47 47 47 72

 7 64 54 54 54 54 54

 8 47 18 18 18 38 38

 9 38 38 38 38 18 40

 10 5 40 26 26 40 18

 11 34 26 40 40 14 26

 12 54 14 14 14 26 14

 13 44 62 57 62 5 62
 14 13 57 62 57 57 57

 15 52 5 5 5 62 64

 RCB Standard classical analysis
 RevG Reversible Gibbs with Gaussian prior for r

 L1MH Metropolis-Hastings with Li fertility in-
 crements

 t? - t? t? likelihood with t? fertility increments
 RevU Reversible Gibbs with uniform prior for r
 BK Classical extended first differences analy-

 sis

 concerns the choice of prior for the fertilities. In-

 stead of (5.2), one alternative is (3.3), with wij = 1,
 for adjacent plots i -j, and y Al,"/2. Then,

 ,7 ( ifj I iP-1, AP,)

 (5.10) a Al,/,2exp(_A1/2 E |qfi - >l
 jE- di

 which is symmetricabout l(Gf.1 + if+ 1) and uni-
 form between qfi-1 and q?i+,. This prior is able to
 accommodate occasional large jumps in fertility.
 Note that scaling by A'1/2 rather than A, maintains
 common units for the A's but destroys the conjugacy

 with respect to a F distribution in the posterior for
 A4,. In implementing (5.10), we update fertilities
 individually, using a Hastings algorithm, and use

 standard rejection sampling for A,. The results are
 shown in the middle graphs of Figure 2 and in the
 L1MH columns of Tables 4 and 5, all of which
 provide satisfactory agreement with the corre-
 sponding RevG estimates. This is not always the
 case, as we discuss briefly in Section 5.6.

 We also carried out an MCMC run with a vague
 prior (i.e., A= 0) for variety effects. The results
 appear in the RevU columns of the two tables and
 can be compared with those for the Gaussian prior
 and also with the frequentist BK extended first-
 differences analysis in Besag and Kempton (1986),
 which, like RevU, imposes no shrinkage on the

 variety effects. The contrast with RevG is quite
 substantial, caused by the rather small variety ef-
 fects, and does not occur in all of the trials in the
 catalogue.

 5.6 Extensions

 Markov chain Monte Carlo methodology allows
 one to explore a very wide range of different formu-
 lations. One possibility is to replace the Gaussian
 assumptions in the likelihood and the fertility in-

 crements by tv and t, distributions, with specific
 choices of vy and v,,. Outliers, as well as sudden,
 large jumps in fertility, are accommodated when

 the degrees of freedom in the t-distributions are
 small. This is illustrated in Besag and Higdon (1993,
 Section 2) on an awkward randomized complete
 blocks trial for wheat (Wilkinson, 1984) carried out
 in El Batan, Mexico, by the International Center
 for Improvement of Maize and Wheat (CIMMYT).

 As a further extension, one can treat vy and v,, as
 additional parameters in the model, with their own
 priors. This hierarchical-t formulation is most eas-
 ily implemented using the definition of t in terms
 of Gaussian and chi-square distributions. Formally,
 this part of the algorithm is a Gibbs sampler con-
 struction, via an auxiliary variable. The bottom
 graphs in Figure 2 and the t? - t? columns in
 Tables 4 and 5 show the results for the spring

 barley trial, with priors for vy and , that are
 independent and uniform on the integers 1, 2, 4, 8,
 16, 32 and 64, although almost any other choice
 could be made. Table 6 approximates the joint pos-

 terior distribution of vy and v,.
 The spring barley trial provides an example of a

 well-designed experiment, so the robustness of the
 analysis to changes in the likelihood and in the
 fertility prior is not surprising. For the El Batan
 data, the results are less consistent, with the esti-

 TABLE 6

 Approximate bivariate distribution of degrees
 of freedom in fitting mixtures of t-distributions

 to yields and fertilities

 1 2 4 8 16 32 64

 1 . .00
 2 ..01

 4 * .01 .01 .02 .02 .02 .08

 VY 8 .01 .02 .04 .04 .04 .04 .19
 16 .01 .03 .05 .05 .05 .05 .24
 32 .01 .03 .05 .05 .06 .05 .25
 64 - .01 .03 .04 .05 .05 .05 .23

 .00 .03 .12 .19 .22 .23 .20
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 BAYESIAN COMPUTATION AND STOCHASTIC SYSTEMS 27

 mates for two of the varieties differing markedly
 under the Gaussian and the hierarchical-t formula-
 tions. This is because the latter analysis detects a
 large jump in fertility and an apparent outlier, both
 of which materially affect the two variety esti-

 mates. A standard nonspatial analysis of these data
 would be wholly unreliabl? because of the large
 fertility gradients and the lack of an appropriate
 blocking structure. Of course, the results would still
 be unbiased under randgmization.

 One modification of the basic formulation in Sec-
 tion 5.2 is to experiments that have a factorial
 dfesign, in which case one must ensure that the
 priors and the MCMC honor the treatment struc-
 ture. For an example, we refer to Besag and Higdon
 (1993, Section 3), in which a single replicate of a
 2 X 33 experiment on triticale is analyzed.

 In some trials that have a two-dimensional lay-
 out, linear fertility adjustment may be insufficient.
 For a brief discussion of some pairwise-difference
 priors on the rectangular lattice, see Section 3,
 although it is usually necessary to allow asym-
 metry between the plot axes and to include finite-
 sample edge corrections (cf. Besag and Kooperberg,
 1993) unless the distribution satisfies separabil-
 ity. Besag and Higdon (1993, Section 4) discuss a
 10 x 15 balanced lattice square experiment on 25
 varieties of spring wheat, in which a particular
 variety appears on the boundary of all six replicates
 and is shown to be vulnerable to spatial effects in a
 standard analysis.

 Finally, the basic formulation can be extended to
 combine information from several different but re-
 lated experiments. For example, in developing new
 lines, plant breeders conduct a sequence of trials,
 with successive reduction of the number of varieties
 at each stage. In a Bayesian framework, the poste-
 rior distribution from the first trial should become
 the prior for the second, and so on. This is achieved
 if, at each point in the sequence, an overall MCMC
 analysis is carried out simultaneously on the set of
 completed experiments.

 6. GAMMA-CAMERA IMAGING

 In this section, we describe an application
 of MCMC to image reconstruction. Bayesian
 approaches to image analysis, originating in
 Grenander (1983), Geman and Geman (1984) and
 Besag (1983, 1986), can be described briefly in terms
 of an unobservable true image x, which is subject
 to degradation in producing an observed version y.
 The loss of information may be extremely severe, as
 in tomography, where the data are degraded projec-
 tions of the true scene, or in high-level computer
 vision tasks such as object recognition, where more

 subtly the truth is a construct in image space.
 Thus, the Bayesian paradigm is especially attrac-
 tive in imaging, because it allows the user great
 flexibility both in specifying the prior distribution
 7T(x) for x and the likelihood L(y I x). The former
 is important because there is always contextual
 information about an image, the latter because dif-
 ferent sensing devices have their own peculiar
 characteristics, which can usually be assessed ex-
 perimentally.

 One basic use of Bayesian image analysis is to
 produce point estimates of pixel images or image
 functionals, either via MCMC, such as Gibbs sam-
 pling or simulated annealing, or by deterministic
 methods, such as ICM or modified EM. In object
 recognition, deformable templates and models from
 stochastic geometry have been the focus of much
 recent research (e.g., Grenander and Keenan, 1989;
 Ripley and Sutherland, 1990; Amit, Grenander
 and Piccioni, 1991; Aykroyd and Green, 1991;
 Grenander, Chow and Keenan, 1991; Phillips and
 Smith, 1993; Baddeley and van Lieshout, 1993;
 Grenander and Miller, 1994; Mardia and
 Hainsworth, 1993, and references therein, includ-
 ing the influential Bookstein, 1989, 1991). In the
 former, each category of object is assigned a fixed
 geometrical prototype, which is then allowed to
 deform stochastically to cater for the variability of
 objects within each class, which may be partly a
 product of natural variation and partly due to per-
 spective, magnification, occlusion and so on. If gross
 deformations are permitted, categories will be ill-
 defined, whereas too stringent a definition will ex-
 clude some objects from their true classes. Thus,
 the definition of the prior is more critical than in
 low-level computer vision. In addition, it is usually
 necessary to specify more mundane aspects of the
 image prior, relating to pixel intensities, for exam-
 ple. Incidentally, the usual updating procedure for
 stochastic templates is an approximation to
 Langevin diffusion, which can sometimes be made
 rigorous as in Section 2.3.4, but a promising alter-
 native is a Metropolis algorithm based on proposals
 that involve simple vertex-displacements.

 In our application, we are concerned only with
 low-level imaging but nevertheless the task in-
 volves deconvolution and is methodologically simi-
 lar to problems in tomographic reconstruction. In
 keeping with the remainder of the paper, we shall
 place some emphasis on measures of uncertainty,
 which is unusual in image analysis, and perhaps
 controversial.

 6.1 Modeling Nuclear Medicine Images

 Gamma-camera imaging is a "nuclear medicine"
 technique used in modern medical diagnosis. While
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 it is incapable of the high spatial resolution of
 anatomic detail that characterize digital X-ray and
 magnetic resonance imaging, for example, it never-
 theless has an increasingly important role through
 its ability to study function rather than form.

 A radioactively labeled substance is introduced
 into the patient, usually through injection or in-
 halation. The substance is chosen as one known to
 become concentrated in the organ of interest, in a
 manner related to the phenomenon under study,
 and of course the labeling allows the pattern of
 concentration to be observed noninvasively. Photon
 emission occurs in the organ at a rate varying
 spatially according to the concentration, and in-
 direct measurements of this concentration can
 thus be made by counting emitted photons with a
 suitable instrument.

 The detector in use in most hospitals is the
 gamma camera; its physical and operational prop-
 erties are described by Larssen (1980). Incoming
 photons have to traverse the narrow parallel bores
 in a lead collimator; those unable to do so are
 absorbed. The photons successful in passing through
 impact on a fluorescing crystal, causing a fluores-
 cence whose location and energy are measured by
 photomultiplier tubes and electronic circuitry.

 Ultimately, a spatially discretized map of the
 photon arrivals, within some prescribed energy
 range, is available to the clinician in the form of an
 image. In simple use of the device, such images are
 presented "raw," but the camera can also be used in
 other modes. These include the production of se-
 quences of images recording the dynamic progress
 of the radioactive isotope through body tissue, as
 a result of metabolization, for example, and the
 technique of single photon emission computed tom-
 ography (SPECT). This is the reconstruction of
 three-dimensional information about the patient
 from data obtained by rotating the gamma camera
 around the patient to obtain a sequence of projec-
 tions. Geman, Manbeck and McClure (1993) build
 on their earlier work to produce a comprehensive
 framework for reconstruction of SPECT data. They
 use maximum likelihood, followed by ICM (Besag,
 1986), to converge to a local maximum of the poste-
 rior distribution. Estimation of the interaction pa-
 rameter in the robust prior is carried out off-line,
 using MCMC. Their approach to modeling the like-
 lihood has been further developed by Weir and
 Green (1994). Green (1990) takes a different path,
 via a "one-step late" adaptation of the EM algo-
 rithm (Dempster, Laird and Rubin, 1977) to ap-
 proximate the maximum a posteriori reconstruc-
 tion. This has the computational advantage of not
 requiring the maximum likelihood solution en route,
 to which convergence is extremely slow.

 Here, we are concerned with inference based only
 on a single image frame obtained with a gamma
 camera. The data consist of a rectangular array of
 counts of detected photons, which we denote by {Yt,
 t E T}. The appropriate statistical model is essen-
 tially that which applies to all emission data, in-
 cluding both PET (Shepp and Vardi, 1982) and
 SPECT. If {x(u), u E -R'} denotes the isotope con-
 centration at spatial location u, and at(u) the mean
 rate of arrival at detector location t of photons
 emitted at u, per unit concentration at u, then we
 find

 Yt Poisson(fat(u)x(u) du)

 independently for all t E T. This model captures
 the principal physical effects of absorption and
 scattering in the body (due to nuclear interactions),
 and the collimation, all of which lead to the thin-

 ning expressed by at(u), while the integral corre-
 sponds to the superposition of emissions from dif-
 ferent point sources u.

 The model will apply to data from a gamma
 camera used in any of the modes mentioned above:
 here, with a single frame, the integral above re-
 presents simply a pixelated, blurred, attenuated
 projection. Because of the narrow angle of view
 imposed by the collimator and the high level of
 attenuation per unit distance within the body, there
 is very little information in the data about the
 variation in x(u) in the third dimension, orthogonal
 to the plane of the projection. As in Aykroyd and
 Green (1991), we therefore drop one dimension and,
 after discretization of body space on the same grid
 as that on which the data are recorded, assume the
 model

 Yt Poisson( Ehtsxs)

 in which xs represents the discretized attenuated
 projection of x(u) onto the plane of the camera, and
 hts is the discretized point spread function. Our
 present analysis does not use information about

 physical units, so we assume that Ethts = 1, that
 is, that y and x are dimensionless and on a compa-
 rable scale.

 In practice, medical physicists routinely form
 gamma-camera images of phantoms involving line
 and point sources in order to calibrate the device

 and to estimate the point spread function; thus hts
 can be assumed known. Here we will assume that

 hts is a discretization of a circular Gaussian func-
 tion, with standard deviation 2.0 in pixel units.

 We observe y and wish to make inference about
 x. Our prior on x is again a non-Gaussian
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 pairwise-difference distribution. It is convenient to

 work on a logarithmic scale, because values of x
 are necessarily nonnegative, and we assume

 (6.1) 7T(x) aep{-Er F{y(ln Xr -ln x-)}}
 r r

 where 'F(u) = 8(1 + 8)ln cosh(u/8), as in (3.4), and
 y and 8 are regarded as known positive constants.
 The summation in (6.1) is over all pairs of directly

 and diagonally adjacent pixels r s, and the prod-
 uct in the denominator is a Jacobian term arising
 from adoption of the logarithmic scale for x. In the

 example below, we set y = 1.8 and 8 = 2.0 but the
 results are quite robust. In some imaging tasks, it

 is necessary to treat such constants as patient- and

 context-dependent, in which case an extra layer in
 the hierarchical formulation is required. Pragmatic
 approaches are available but we briefly describe a
 fully Bayesian approach in Section 7.

 6.2 MCMC for Gamma-Camera Imaging

 The posterior density I(x I y) has full condition-
 als

 7T(xs IX_s,y) a T(xs IX_s) Pt(Yt x),
 t: h t,O

 where Pt(Yt I x) denotes the relevant Poisson proba-
 bility, so that

 IT(Xs I x_, y) a exp(- E F{y(ln Xr- ln xs)}
 re ds

 (Yt ln{ 2htrXr}
 t: ht5 ? r

 - I1htrXr -)lnxs).
 r I

 This conditional density has no mathematically
 aberrant behavior but it is clearly nonstandard and
 is neither log-concave in x nor in ln x . Values
 from it might be generated by the ratio method, for
 example, but since that would incur a considerable
 setup cost for each random value sampled, not to
 mention algebraic complications, we prefer a site-
 wise Hastings algorithm, using a proposal density
 that corresponds to a uniform distribution for ln x's,
 centered on the current value ln xs. Thus,

 RS(XS ->x) a (x)
 on an interval lln(x'Jxs)l < c. Such a density satis-
 fies the positivity requirement (ii) of Section 2.3.3

 and results in an acceptance function calculated
 from (2.9):

 AS(X S_- X_; X_S)

 = min,exP{- (E(F {ln h -{(D yln rI))

 (6.2) +, (n1 hts(xs -XS)

 t: htso ? Er htr xr

 -htsfXS - Xs))}j

 Note that the Jacobian terms have canceled.
 The performance of the MCMC method is influ-

 enced by the value of the constant c, determining
 the spread of the proposal distribution for xs. In the
 example below, a small-scale pilot experiment was
 carried out to assess the effect of c on the autocor-

 relation times for individual xs and on statistics of
 the Hastings changes. As c was increased, the
 mean acceptance probability decreased but the root
 mean square of the resulting changes increased.
 The autocorrelation times, estimated by the trun-
 cated periodogram method in Sokal (1989), appar-
 ently achieved a minimum around c = 0.35, corre-
 sponding to an interval for x' with endpoints dif-
 fering by a factor of 2, and this was the value
 adopted for the main runs. One factor that was not
 considered that might be relevant in other analyses
 was that low average probabilities of acceptance
 mean many ties in the MCMC sample, which may
 cause artifacts in exploratory analysis of data from
 such runs. In drawing x' and deciding whether to
 accept it, according to (6.2), there are computa-

 tional advantages in maintaining the values At =
 Erhtr xr up-to-date as x varies. We do this incre-
 mentally, but then recompute all lt from scratch
 every 50 sweeps, to mitigate the effect of accumu-
 lated rounding error.

 We routinely compute pixelwise means and vari-
 ances along the MCMC run, but formal assessment
 of joint posterior variability of the whole of x is
 more problematic. A simple technique we find use-
 ful is to display the sequence of x(t) on the screen
 during the simulation; such informal dynamic
 graphics give a valid impression of joint variability
 provided that dependence along the sequence is not
 excessive. We have previously applied the same
 idea in geographical epidemiology and suggest that
 such spatial displays may also be helpful in non-
 spatial applications.
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 6.3 Simultaneous Credible Regions
 Based on Order Statistics

 If a substantial sample from the post-burn-in

 MCMC realization is stored, then it is possible to
 construct simultaneous credible regions for the
 whole vector x, without making parametric as-
 sumptions. Since these bounds will be based on
 order statistics, they will be exactly equivariant to
 (strictly) monotone componentwise transformations
 of the variables, for continuous distributions IT(x).

 Denoting the stored sample by {x(t): i
 1, 2, ..., n; t = 1, 2, ..., m}, order {x(t): t=
 1,2,. .., m} separately for each component i, to ob-
 tain order statistics xVt] and ranks rYt), t=
 1,2, ..., m. For fixed k E{1, 2, ..., m}, let t* be the
 smallest integer such that x`m+`t*] < x(t) < x[t*
 for all i, for at least k values of t. It is equal to the

 kth order statistic from the set {max(maxi rY), m +
 1- mini rYt)): t = 1- 2, ... ,

 Then {[Xm +1-t*] xP*]]: i = 1 2 ..., n} are a set
 of simultaneous credible regions containing at least
 100k/m% of the empirical distribution. The order-
 ing and ranking at each component i can be done

 at the same time, so the procedure requires only
 ordering n + 1 vectors of length m.

 Even for continuously distributed x, these bounds
 will be slightly conservative, to an extent increas-
 ing in n, because of ties between the ranks over

 different components. For such x, however, the
 bounds will be consistent as m -> oo, for fixed n.
 One-sided and other asymmetric bounds can be
 constructed analogously.

 6.4 An Example

 Data from one gamma-camera study, based on a
 256 x 256 image of a pair of hands, are shown in
 Figure 4. This image shows the raw data; the pho-
 ton counts in individual pixels vary between 0 and
 93. The MCMC simulation was organized as de-
 scribed above and was run for 8,000 sweeps, of
 which the first 500 were discarded. The image in
 Figure 5a represents the MCMC estimate of the

 posterior mean for a 64 x 64 subimage, and that in
 Figure 5b shows the corresponding pixelwise poste-
 rior standard deviations. It is difficult to gain a
 clear impression of the scale of this variability in
 image form, so results for a left-to-right cross sec-
 tion through the wrists, passing through the hot
 spot evident in the left wrist, are displayed in
 Figure 6 and include the raw data Yt, and MCMC
 estimates of the posterior mean E(x, I y), 80% pix-
 elwise credibility bands for xS, 80% simultaneous
 credibility bands for xs and the blurred posterior
 mean E(EShts xs I y). The credibility calculations are

 based on a stored subset of 2,500 samples, equally

 spaced along the MCMC realization.
 Note that noise and blur have been removed,

 without destroying definition at the edges of the
 features. As discussed in Green (1990), use of the
 lncosh( ) function has countered the effect of a
 Gaussian prior, to smooth over steep gradients in x

 at tissue boundaries, to an extent controlled by -y
 and 8. The formulation has respected the underly-
 ing Poisson process and the nonnegativity of the

 image itself. Credible intervals and simultaneous

 credible regions are obtained as a by-product of the
 MCMC, and posterior probability statements about
 other functionals of x could have been made. The
 extension of MCMC to some different imaging
 modalities is relatively straightforward, as in syn-
 thetic MRI (Glad and Sebastiani, 1995; Besag and
 Maitra, 1995), or is problematic merely for want
 of current raw computing power, as perhaps for
 a full three-dimensional treatment of emission
 tomography.

 7. DISCUSSION

 In conclusion, we draw together some of the key
 issues in the application of Markov chain Monte
 Carlo methods in Bayesian computation. It is evi-
 dent from a rapidly expanding literature that
 MCMC is applicable to a very wide range of com-
 plex Bayesian models, many of which are at pre-

 sent well beyond the reach of other computational
 methods. Quite apart from philosophical differ-
 ences, such formulations often have no obvious fre-
 quentist counterparts (as, e.g., in Section 4) or there
 are no existing frequentist computational proce-
 dures (as in Section 5.6), although here MCMC
 maximum likelihood might prove useful. We have
 found the Bayesian paradigm especially persuasive
 in spatial applications where there are known to be
 local contextual regularities in the true scene that

 cannot be modeled plausibly by a physical process
 but for which one can (crudely) represent one's
 beliefs via a Markov random field. Thus, the true
 scene is considered to be fixed, rather than sampled
 from a process, but our views about it are re-
 presented stochastically. In image analysis, the
 paradigm provides a unified approach to many dif-
 ferent problems, so that the application to deconvo-
 lution in Section 6 is part of a general framework
 and there is no need continually to invent ad hoc
 techniques as each new problem comes along. Other
 applications might involve mosaic priors in classifi-
 cation, edge sites in segmentation and stochastic
 templates in object recognition. Likewise, changes
 in the imaging system are immediately accommo-
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 dated by appropriate modification of the likelihood,
 so that in MRI, for example, the Poisson model is
 replaced by a two- or three-component Gaussian
 distribution at each pixel.

 The equivalence between any Markov random
 field formulation and the Gibbs sampler explains
 why the origins of such methods are to be found in
 spatial applications. One could describe Bayesian
 computation via MCMC abstractly as the restora-
 tion of hidden Markov random fields. We hope also
 to have shown that a spatial perspective may be
 useful even in contexts that are not overtly spatial.

 For example, Section 4 uses pairwise difference
 priors to represent associations between factors
 ordered in time, and it is suggested that higher-
 dimensional "spatial" priors may be useful in mod-
 eling interactions in factorial experiments.

 Of course, MCMC should not be implemented if
 any direct method of simulation exists. We illus-
 trate this in Section 4.3, where MCMC estimation
 from current data is followed by ordinary simula-
 tion for future prediction. This and the use of
 Cholesky decompositions in Sections 4 and 5 pro-
 vide straightforward examples of the methodology
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 in Appendix 2. However, much more subtle uses of

 partial conditioning can be envisaged in high-
 dimensional multimodal applications, where it can
 be helpful to engage the posterior distribution at
 different scales. In image analysis, these scales are
 associated with coarsenings or sometimes refine-

 ments of a pixel lattice; in other contexts, such as
 pedigree analysis, the different levels may corre-
 spond to abstractions of the physical reality.

 Markov chain Monte Carlo has its uses even for
 models in which standard analytical or numerical
 methods are applicable. Thus, it can provide a
 (computationally intensive) check on the accuracy

 of other methods; its introduction may be necessary
 in carrying out sensitivity analysis; and it can be

 used to calculate complicated functionals of the
 posterior distribution, to which other methods may
 not relate (e.g., the probability that a particular
 treatment is best, as in Section 5, or the construc-

 tion of simultaneous credible regions, as in Sections
 4.2 and 6.3).

 Indeed, one of the most appealing features of
 MCMC is the ease with which estimates of proba-
 bilities and associated quantities, such as credible
 intervals, are obtained directly from the corre-
 sponding empirical distributions, rather than via
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 moment-based approximations. In this sense, we
 see MCMC as "putting the probability back into
 statistics" and have quoted posterior means and
 standard deviations because it is usual to do so,
 rather than out of conviction. Furthermore, func-
 tionals of the posterior distribution whose estima-
 tors are sensitive to small changes in the MCMC
 sample need to be handled with great care; this can
 include moments as well as probabilities of rare
 events. We have an example in which, admittedly
 for an untransformed scale parameter, the sample
 means in two long runs differed by a factor of 2 and
 yet the medians were almost identical.

 Arguably, the most important aspect of MCMC in
 Bayesian inference is its flexibility, as referred
 to by Smith (1992): "... for many of us one of the
 most exciting consequences of the combination of
 Markov chain Monte Carlo methodology and ever-
 increasing computer power should be a 'model lib-
 eration movement'!" Accordingly, one can invoke
 models that are considered most appropriate to the
 data, often involving nonstandard likelihoods and
 nonconjugate priors. We hope that our examples in
 Sections 5 and 6 illustrate this point and that,
 where readers find our model formulations unap-
 pealing, they will at least agree they could easily
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 substitute their own, without creating computa-
 tional difficulties. Markov chain Monte Carlo
 methodology also deals rigorously with missing val-
 ues, in properly representing the additional vari-
 ability involved in the model. Whereas sensitivity
 to departures from a basic formulation may be
 assessed via importance sampling or by rerunning
 with a suitably modified prior and/or likelihood, an
 alternative is to model uncertainty explicitly by
 adding appropriate additional layers to the existing
 hierarchy, as illustrated in Section 5. Of course, the

 corresponding MCMC algorithm must be designed
 so as to move freely around those parts of the model
 space that have substantial support in the posterior
 distribution.

 In the methodological sections of the paper we set

 out the basic ingredients for building MCMC algo-
 rithms. We challenged the assumption that the
 Gibbs sampler should be the automatic choice, even
 where convenient to code, and indicated where si-
 multaneous updating of several variables is conve-
 nient and desirable. We focused on the construction
 of general frameworks which embrace a family of
 algorithms: for example, Hastings, Metropolis and
 Gibbs samplers in Section 2, and the ARMS proce-
 dure in Appendix 1. Above all, we hope we have
 shown the opportunities for flexibly combining
 samplers of different types to deal with different
 variables, and for using other hybrid samplers.

 We have avoided making any firm recommenda-
 tions about how to choose between MCMC algo-
 rithms. Although methodological development and
 practical experimentation will provide useful guide-
 lines, as will probabilistic research into Markov
 chain simulation, the eventual choice will often
 depend on hardware and software environment and
 whether the context is routine production on many
 similar data sets or is a one-off analysis.

 Finally, what of future methodological develop-

 ments in MCMC? One of the most promising di-
 rections is in the construction of new algorithms
 based on auxiliary variables and processes. These
 usually concern severely multimodal distributions,
 for which the intention is to speed up the very slow
 movement of standard samplers across modes. Here
 we provide a partial update on the general review
 in Besag and Green (1993, Section 5).

 As discussed there, the most successful auxiliary
 variables method has been the Swendsen and Wang
 (1987) algorithm designed specifically for the c-color
 Potts model (and hence, when c = 2, the Ising
 model) in the absence of an external magnetic field.
 If such a field is present, the distribution may still

 be severely multimodal but the performance of
 the algorithm can deteriorate dramatically (e.g.,
 Marinari and Parisi, 1992) because the clusters it
 forms are too large. One remedy is to replace the
 total decoupling of Swendsen-Wang by partial de-
 coupling, based on the external field; see Higdon
 (1993) for an example with the Ising model. This
 method may also be relevant for some classification
 problems in spatial statistics and image analysis,

 where Potts models are sometimes used as ex-
 changeable prior distributions, with each color
 identifying a particular class. The effect of the ob-
 served data is then equivalent to that of applying
 an inhomogeneous external magnetic field.

 A development with wider implications has been

 the introduction of simulated tempering into the
 literature on auxiliary processes (Marinari and
 Parisi, 1992; Geyer and Thompson, 1995). Recall
 that the original idea of auxiliary processes (Geyer,
 1991a) was also to speed up the mixing of an
 awkward multimodal sampler, by now devising an
 ordered sequence of chains, which, at one extreme,
 has the target distribution as its limit and, at the
 other, a rapidly mixing chain. The chains are run in
 parallel, with intermittent proposals to swap states
 of adjacent chains and with acceptance probabili-
 ties that ensure each maintains its own limiting
 distribution. The occurrence of swaps can substan-
 tially increase mixing.

 In simulated tempering, a corresponding hierar-
 chy of chains exists but only one is running at any
 particular time. Moves from the current chain to
 the adjacent chain(s) are proposed periodically,
 again such that the individual limit distributions
 are maintained. Thus, at one extreme, information
 can be collected on the target chain. Now suppose
 that, at the other, we can use an exact method of
 simulation, in which case visits to this chain form
 regeneration points for the overall chain and the
 benefits of regenerative simulation can be exploited
 (Ripley, 1987, Section 6.4; Mykland, Tierney and
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 Yu, 1995). One of these is that if the MCMC is
 initiated at the easy extreme and run for a fixed
 number of regenerations, then sample means calcu-
 lated from the target chain must have exactly the
 correct expectation or else long-run biases would
 accumulate; this leads into the use of standard
 ratio estimators (since a normalizing constant must
 be estimated) and central limit theorems based on
 independent observations.

 Although the above description does not explain
 how the hierarchy should be selected, a parametric

 family may be suggested by the formulation itself.
 Thus, in the above classification problem, with an
 exchangeable Potts prior, it is necessary to specify

 the value 80 of an interaction parameter ,3, where
 /3 = 0 corresponds to independence. If multimodal-
 ity is a problem, an alternative to partial decou-
 pling is to use simulated tempering with ,3 taking a

 finite set of values in [0, 80. Unfortunately, this
 introduces a new complication, because the normal-
 izing constants in the prior distributions are un-
 known as a function of /3. The simplest remedy is to
 precompute the constants (up to scale) by running a
 simulation for each prior and then combining the
 results via Geyer's reverse logistic regression or
 otherwise. This will be particularly appropriate if
 the same constants are to be used in many future

 tasks; for further details, see Marinari and Parisi
 (1992), Geyer and Thompson (1995) and Higdon
 (1994). Alternatively, several on-line implementa-
 tions are currently being developed, using stochas-

 tic approximation or Fisher scoring, for example.
 The computational effort required for simulated

 temperating may not seem worthwhile and, in
 Higdon's example, partial decoupling even proves
 to be more effective. Nevertheless, it has an inter-
 esting consequence that one can use exactly the
 same approach to implement a fully Bayesian pro-
 cedure when 83 is a parameter with a correspond-
 ing finite-support hyperprior. For examples, see
 Higdon (1994) and, in a different context, where the
 normalizing constants were precomputed without
 MCMC, Besag and Higdon (1993, Section 4). The
 same reasoning could have been applied in Section
 6, treating 8 as a parameter rather than a fixed
 constant, had this been thought necessary. We ex-
 pect this to be a fruitful area for future research.

 APPENDIX 1: RANDOM PROPOSAL
 DISTRIBUTIONS

 We referred in Section 2.3.1 to the ARS algo-
 rithms of Gilks and Wild (1992) and Gilks (1992),
 proposed for use in Gibbs sampling, which rely on
 the relevant full conditionals being log-concave. This
 condition is relaxed in the adaptive rejection

 Metropolis sampling (ARMS) method of Gilks, Best
 and Tan (1994) by the introduction of a two-stage
 procedure involving a Hastings step. All three algo-
 rithms are open-ended, in the sense that an indefi-
 nite number of random variates are generated until
 a particular condition is satisfied. This stimulated
 us to look for a broader framework embracing
 ARMS and which also allows the use of curtailment
 rules in both ARS and ARMS.

 We restrict attention to a single step of a sampler
 which, like most of those in Section 2, updates the
 variables XT while holding X_T fixed. Suppose
 there is available a class of appropriate kernels

 {Pa(X -* B)} indexed by an abstract parameter a.
 Updating XT proceeds by first drawing a at

 random from a distribution ,u(a; X-T) parameter-

 ized by X-T, and then using P a(X -* B). If all {PT}
 have detailed balance, so does the mixture:

 fir(x)fPT(x -> C) dA(a;X-T) dv(x)

 =-| 7r(x-T)ff (XT I X-T)
 B-TnC-T BT

 *Pa(X - C) dv(xT) d1u,(a;X-T) dv(x-T)

 = |flCrT(x-T)ff 1T(XT I X-T)
 B-TnC-T CT

 *Pa(X B) dv(xT) d1(a;X_T) dv(x-T)

 - f T(X)I( p(X - B) dA(a; X_T) dv(x),

 with a similar result assuming only global balance.

 For a concrete but generic example, PT(x -* B)
 might be a Hastings sampler using a proposal dis-
 tribution specified by a; what the equality above
 shows is that it is legitimate to use a random
 proposal distribution, even one depending on X-T
 and compute the acceptance probability ignoring
 this random mechanism.

 The ARMS algorithm is an instance of this. Re-
 peatedly, piecewise exponential approximations to

 fr(XT I X-T) are constructed as in ARS, until a value
 X4 generated from the latest one passes a rejection
 test. This value is then used in (2.9) as if the
 proposal density RT was the pointwise minimum of
 the final approximation and the full conditional.

 It is evident from the argument above, first, that
 the algorithm is valid for any sequence of approxi-
 mating densities and, second, that the procedure
 can be curtailed at any stage independent of the
 value of the final x'T. Whether the full conditional
 is log-concave, so that ARS is available, or not, such
 a strategy can be used to speed up the algorithm; it
 remains to be seen if this is effective in practice.
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 APPENDIX 2: MCMC BASED ON PARTIAL

 CONDITIONING

 All of the MCMC algorithms discussed up to this
 point have been based on the full conditionals

 7r(XT I X-T) for some collection of sets T. We now
 explore methods based on only partial condition-
 ing. Thus, let T c S c.A/, where S is fixed and T is

 chosen from a probability distribution {PT}, as in
 the random scan algorithms of Section 2.4.1. Write
 U = S \ T. We consider transition kernels P of the
 form

 P(xS ' BS)

 (A2.1) E PTI[ XU E BU] PT (XT ' BT; XU),
 T

 where PT leaves xu unaltered and is independent
 of x-s; indeed, we ignore x-s without loss. Now
 suppose PT is time reversible with respect to
 IT(xT I xu); that is,

 |X IBT XU)PT(XT CT; xu) diV(XT)
 DT

 (A2.2) =| rxIxu

 T

 PT(XT -* BT; XU) dv(XT),

 for all BT, CT c P and xu E Xu Then we have the
 following result.

 THEOREM 1. Suppose XR has density IT(XR),

 where R D S, and Xs is generated from Xs via
 (A2.1). If the PT'S satisfy (A2.2), then P is reversible
 with respect to fr(xs), so that, in particular, Xs
 also has density ir(xs).

 PROOF. We have that

 f 7T(xs)P(xs -> Cs) dv(xs)

 EPTJ iT(XU)) IT(XT I XU)
 T BunlCU BT

 PT(XT - CT; xU) dV(XT) dv(xU)

 = f 7r(xs)P(xs -' BS) dv(xs).
 Cs

 using (A2.1), (A2.2) and (A2.1) again. O

 We remark in passing that again the weak-
 er "global" version of this result is also true: if
 (A2.2) holds, for all T, with Bs = s, then Jir(xs)
 P(xs '- Cs) dv(xs) = iT(Cs).

 Note that after such a transition only variables
 Xs indexed by a subset S of R can be guaranteed
 to be distributed as ir; if S is a proper subset,

 Kr(XR) can never be retrieved by this mechanism.
 However, if we use a Gibbs kernel (which in this
 Appendix will be interpreted as meaning that vari-
 ables are drawn from a conditional distribution
 determined by the target distribution, even if this
 is not the full conditional), this shrinking of the
 domain of equilibrium can be reversed, as the fol-
 lowing theorem shows.

 THEOREM 2. Suppose XR has density Tr(xR) and
 that {PT} ensures that U c R. Let Xs be generated

 from Xs via (A2.1), in which the PT's are Gibbs
 kernels, that is,

 PT(XT >BT; XU) = 'r(XT I xU) dv(XT),
 T

 and hence XT is conditionally independent of XT.

 Then Xs has density drT(xs).

 The difference between the kernels is that, in a
 Gibbs step, it is not required that the updated r.v.
 already has the correct conditional distribution. In
 short, under both schemes, each updating XT while

 holding xu fixed, XR distributed as idTxR) leads to
 Xs distributed as -r(xs), where S = T u U. With
 non-Gibbs kernels, it is necessary that S c R, but

 with Gibbs kernels we only require U c R. The
 following theorem summarizes the implications
 when such kernels are used in sequence.

 THEOREM 3. Consider the sequence

 (X = R) >(S =R') -> *. (S(K-1) =R(K))
 ( (K(K) = R(K?+1)) f ... > (S(L) =/X),

 where the arrow linking R (K) and S(K) denotes
 update of XT (K). The sequence supports a valid cycle
 of an MCMC algorithm if, for each K, either S(K) c
 S(K-1), in which case a Gibbs or non-Gibbs step
 can be made, or U(K) C S(K-1), where U(K) =
 S(K) \T(K), in which case a Gibbs step must be
 made.

 Example: Suppose X has n = 5 components and
 that successive kernels provide the following:

 (a) a new X1 given current X1, X2, X4, X5;

 (b) a new X2 and X4 given current X1, X2, X4;

 (c) a new X2 and X3 given current X2, X3, X4;

 (d) a new X4 given current X2, X3, X4;

 (e) a new X1 and X5 given current X1, X2, X3, X4,

 X5.

 Then steps (c) and (e) must be Gibbs, whereas (a),
 (b) and (d) need only satisfy Theorem 1.

 To obtain full generality, suppose valid sequences
 (S, S', ..., S(L)) are generated stochastically. Theo-
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 rem 3 ensures that, conditional on any sequence
 and hence marginally, the cycle is valid. Thus, a
 valid (T(K), U(K)) combination can be chosen proba-
 bilistically at each successive step. Note that midcy-
 cle marginal statements cannot be made and that

 marginalization only works because S(L) =- is a
 fixed set. For an auxiliary variable, multigrid,

 Swendsen-Wang application in spatial statistics,
 see Besag and Green (1993, Section 5). The validity
 of the algorithm, which was not given explicitly in
 the paper, is an immediate consequence of the gen-
 eral result. There are other much more straightfor-
 ward examples: for instance in any distribution
 that can be represented via the sequential factor-
 ization (2.1), and in particular whenever a multi-
 variate Gaussian random vector is generated via
 the Cholesky decomposition of its variance matrix.

 APPENDIX 3: SENSITIVITY ANALYSIS
 VIA MCMC

 In sensitivity analysis, the effects of plausible
 changes in the basic formulation are studied. Al-
 though important in any brand of statistical infer-
 ence, this is especially so under the Bayesian
 paradigm, where modifications both to the prior
 and to the likelihood need to be considered; MCMC
 is ideally suited to this previously difficult task.
 There are two general approaches, both of which

 were illustrated in Sections 4 and 5. Obviously, the
 first is to rerun the MCMC for each new model of
 interest. This can be very time-consuming, al-

 though one might often use rather shorter runs
 than for the basic formulation. An alternative, more
 satisfactory approach is often available through im-
 portance sampling, as suggested independently by
 Besag (1992) and by Smith (1992).

 Let {IT(x): x c Z} denote the basic model and
 {7T(x): x e} some other formulation, where both
 densities are with respect to a single measure v; as
 usual, we suppress dependence on data y from the
 notation. Suppose that we are interested in the

 expectation of some function g under -Tr. Then,

 ETg = f g(x)-ir(x) dv(x)

 nozroiorsccuin(A3.1 ) n p , w m
 only1 knn T(x) h(x),

 g -i
 =ET

 IT

 provided fr dominates -ir; that is, Zz,implying
 no zero divisors occur in (A3.1). In practice, we may
 onlv know ,T(x) oa h(x) and -7r(x) oa h(x), in which

 case we must replace (A3.1) by

 E,gh/h
 Erh/h

 It follows that we can apply the approximation,

 m

 (A3.2) Ergi E a(t)g(X(0),
 t= 1

 where x(), ..., X(m) is the already existing MCMC
 sample, from ir itself, and

 (A3.3) a@) = h(x(t))/h(x(t))
 Em h( 0())h( X(t))

 Note that this is particularly simple in that the
 weights a(t) do not depend on g.

 Importance sampling will not work well when ir
 and 7T are very different, because too much weight
 will be placed on just a few g(x(t)Ys. Nevertheless,
 this can be monitored by examining the values of
 the weights, which of course sum to unity, and
 resorting to MCMC under -7 when a problem arises.
 In turn, this suggests that one might run several

 MCMC simulations, covering a range of models,
 and base inferences for any particular &r on a corre-
 sponding mixture distribution. This procedure is
 not entirely straightforward in practice, assuming

 the various densities are known only up to scale.
 For further details, see Geyer (1991b). The above
 development is analogous to that given for general
 MCMC maximum likelihood estimation in the re-
 sponse to discussion in Geyer and Thompson (1992).
 Finally, note that importance sampling can also be

 useful for approximating functionals of the base
 density ir, when it is much easier to simulate from
 a similar density iro (see, e.g., Sheehan and Thomas,
 1993).

 Another approach is to examine sensitivity by
 changing ir infinitesimally in the direction of -Tr.
 Consider evaluating expectations under the distri-
 bution corresponding to

 h,(x) = (h(x))1 8(h(x)),

 for which the weights a(t) to be used in (A3.2) are
 just those in (A3.3), raised to the power e and then
 renormalized. For small enough e, these weights
 are arbitrarily close to 1/m, and so the instability
 in MCMC estimates resulting from grossly unequal
 weights does not arise.
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 Comment
 Arnoldo Frigessi

 In the beginning there was the Gibbs sampler and

 the Metropolis algorithm. We are now becoming
 more and more aware of the variety and power of

 MCMC methods. The article by Besag, Green, Hig-
 don and Mengersen is a further step toward full
 control of the MCMC toolbox. I like the three appli-
 cations, which show how to incorporate MCMC
 methods into inference and which also give rise to

 several methodological contributions. As the au-
 thors write, out of five main issues in MCMC, they
 concentrate primarily on the choice of the specific
 chain. The other four issues regard, in one way or
 another, the question of convergence of MCMC pro-
 cesses. I believe that choosing an MCMC algorithm

 and understanding its convergence are two steps
 that cannot be divided. Estimating rates of conver-
 gence (in some sense) before running the chain or
 stopping the iterations when the target is almost
 hit are needed operations if we would like to trust
 the inferential conclusions drawn on the basis of

 MCMC runs. This is especially true because conver-
 gence of MCMC processes is much harder to detect

 as compared to convergence of, say, Newton-Raph-
 son.

 Arnoldo Frigessi is Associate Professor, Diparti-
 mento di Matematica, Terza Universita di Roma,
 via C. Segre 2, 00146 Roma, Italy.

 We can often read in applied papers that "100
 iterations seem to be enough for approximate con-
 vergence," the number being sometimes supported

 by studies on simulated data (see, e.g., Frigessi and
 Stander, 1994). This is really too weak to rely on
 the statistical conclusions, and more can be done. If

 X(t) is the MCMC process with target distribution
 -T on fl, the burn-in can be estimated by comput-
 ing a t* such that

 (1) V t > t*, IIP(X(t) = |x(1)) - 1T(K)II < 8,

 for some fixed accuracy e and for some chosen

 norm, say, total variation. Several techniques are
 available to bound the total variation error from
 above,

 (2) 11P(X(0 = Ix(1)) - 7r()11< g(t),

 where g(t) is a nonincreasing function decaying to
 zero. Then an upper bound on t* can be derived by
 inversion of g, probably a pessimistic estimate of
 the burn-in, but a "safe" choice. Tight bounds of the
 type (2) are hard to get and there are no precise
 general guidelines for the length of the burn-in.
 However a very rough reference value for t* is
 available if -T is a lattice-based Markov random
 field (MRF). In Section 1 of Frigessi, Martinelli and
 Stander (1993) we extend and adapt results origi-
 nally developed in statistical mechanics and rather
 unknown to statisticians. Let -T be a MRF on a
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