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In this paper we propose a Bayesian modeling approach to the analysis of genome-wide association studies based on single
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INTRODUCTION

Genome-wide association studies (GWAS) are now
technologically and financially feasible. Such studies
involve genotyping several thousand cases and
controls across several thousand single nucleotide
polymorphisms (SNPs), in order to identify loci with
a causal effect on the risk, severity, age of onset or
prognosis of human diseases. These studies, such as
The Wellcome Trust Case Control Consortium
[2007], will provide large amounts of data and the
exciting possibility of identifying causal genes and
variants.

GWAS pose difficult statistical challenges. The
large number of associations tested can lead to
spurious findings, unless steps are taken to control
for multiple comparisons [Wacholder et al., 2004;
Dudbridge and Koeleman, 2004]. Accounting for
linkage disequilibrium (LD) between SNPs may
provide means of reducing this problem and hence
increasing power to locate causal loci [The Interna-
tional HapMap Consortium, 2005]. In this paper we
propose a flexible Bayesian approach to the analysis
of GWAS, which allows for inference to be drawn
about the causal locus.

The paper is set out as follows: The second section
introduces the idea of ‘‘seeds’’ as generators of the
observed data. The notation and model are introduced

in the third section; together with details of
inference, convergence checking and computational
aspects are also given. Results from three applica-
tions are given in the fifth section. The paper
concludes with a discussion of possible extensions
and future work.

MODEL BACKGROUND

Motivation for our approach came from examining
the local patterns of densely genotyped SNP data.
Figure 1 shows a section of phased data from
HapMap [The International HapMap Consortium,
2003] for 50 SNPs starting at index 1,751 of
Chromosome One. The data are from 60 unrelated
members of the CEU population in this study, and
therefore consists of 120 strands of genetic data. The
left-hand plot shows the original data, with SNPs on
vertical axis and the strands on the horizontal axis.
In the right-hand plot the strands have been
reordered, by using the first component obtained
from principal components analysis, so that similar
strands tend to be plotted consecutively.

This reordering reveals that a total of 73 of the
chromosome sections are identical copies of one of
three patterns. The remaining SNP patterns can be
generated from these patterns by switching a few
times between them and by changing a few isolated
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values. Therefore, in the formal statistical model
described in Model, we will assume observed SNP
patterns in a particular short section of the chromo-
some to be generated stochastically from combining
and ‘‘mutating’’ the ‘‘seeds,’’ which are considered
as resulting from ancestral haplotypes. Similar ideas
have been used in various works [Scheet and
Stephens, 2006; Rastas et al., 2005; Kimmel and
Shamir, 2005] and are discussed in the sixth section.

METHODS

NOTATION

We assume that the data consist of binary-phased
bi-allelic SNP data, X, for n people and on m SNPs
on a single chromosome. The jth strand for the ith
individual will be denoted as xi;j, j 5 1,2. Each person
also has a binary phenotype variable yi. We consider
possible causal locations, u, lying between each of
the adjacent SNPs. All of our modeling is conditional
on u and therefore this is considered fixed for
Model. We assume that there is a single causal SNP,
at u, which is not measured and that there are
unobserved alleles z at u. The tth element of the jth
strand for the ith individual with zi;j imputed at
location u is given by exðtÞi;j :

exðtÞi;j ¼

xðtÞi;j if tou;

zi;j if t ¼ u;

xðtþ1Þ
i;j if t4u:

8><>:
In this model we have used a discrete parameter
scale to label the SNPs, thereby using their indices as
distance measure. An alternative approach would
have been to use a continuous parameter model,

with SNP locations measured in basepairs; however,
our modeling is primarily driven by LD, which
does not correlate more strongly with either distance
measure. A continuous parameter model would also
have been more computationally burdensome.
Strictly speaking, this model is not consistent as
u varies since the discrete parameter scale is
perturbed by the insertion of the SNP as u. However,
numerical experiments show that this is negligible
(see Inference).

MODEL

We build a statistical model that reflects the
observed data and unknown parameters, including
the location of the causal locus. The model consists
of two interconnecting parts. The first part, the
‘‘strand model’’ accounts for the dependence be-
tween the SNPs along the chromosome, with
unknown parameters a. The second part the ‘‘dis-
ease model’’ models the relationship between the
causal alleles, z, and the phenotype, y, using
unknown parameters b. These two sections together
give us a framework upon which to build a Bayesian
model.

Strand model. Each strand (observed SNPs;
augmented by each possible SNP at u) is modeled
as being generated by a discrete parameter Markov
chain switching between S seeds (see the second
section). For each u, S seeds of length m and centered
at u are chosen by using a heuristic k-means
clustering approach, details of which are given in
Window length and choice of seeds.

The value of the SNP at u for each seed is
calculated by examining its two neighbors. If they
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Fig. 1. The original genotype data (black as rare allele and white as common) for 50 SNPs starting at index 1,751 of Chromosome One of

CEU population (a) in the original order and (b) with the strands reordered. SNP, single nucleotide polymorphism.
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are both the same then that value is imputed
otherwise the next two adjacent SNPs on either side
are considered. This process is repeated until the two
SNPs being considered are the same when the most
often occurring allele is imputed. The S augmented
patterns of length m11 formed in this way are used
as seeds.

A possible series of switches to construct a
particular observed strand, exi;j from the seeds is
represented by the underlying Markov chain hðtÞi;j , t ¼
1; . . . ;mþ 1 and hðtÞi;j 2 S ¼ f0; . . . ; s� 1g. The Markov
chain is assumed to have a stationary transition
matrix G with the (r,s)th element given by gðr; sÞ and
initial distribution p0, which is often assumed to be
the stationary distribution of G. We assume that G
has diagonal entries 1�a0 and off-diagonal entries of
a0=ðS � 1Þ. Thus, 1�a0 is the probability of the chain
remaining in the current state and a0 is a parameter
of G and p0.

Without noise the SNP value at locus t would
necessarily be the same as that of the current seed
and we need more flexibility; therefore, we intro-
duce a ‘‘mutation’’ parameter a1, defined by

exðtÞi;j ¼ hðtÞi;j with probability 1� a1:

This means that the SNP value for a particular
strand at locus t depends both on the current state of
the hidden Markov chain, ht, and on a1.

The likelihood for a particular strand consisting of
xi;j, with zi;j imputed at u is

pðexi;jja0;a1Þ ¼
X

h2Smþ1

p0ðh
ð1Þ
i;j ;a0Þpðexð1Þi;j jh

ð1Þ
i;j ;a1Þ

�
Ymþ1

t¼2

gðhðt�1Þ
i;j ; hðtÞi;j ÞpðexðtÞi;j jh

ðtÞ
i;j ; a1Þ:

ð1Þ

The sum is over Smþ1 elements, so direct computa-
tion quickly becomes infeasible as the number of
SNPs increases, even for a small number of seeds.
However, a recursive procedure allows for the
calculation of (1) in OðS2

ðmþ 1ÞÞ time for each a0,
a1, i, j. Denoting x1:t as fxð1Þ; xð2Þ; . . . ; xðtÞg for any
vector x, the forward variable [Scott, 2002] is
‘tðrÞ � pðex1:t

i;j ; ht ¼ rja1Þ. That is, ‘tðrÞ is the joint
likelihood contribution of ex1:t

i;j as well as the event
ht 5 r averaging over the previous h1; . . . ; ht�1.

The recursive procedure calculates

‘tðrÞ ¼ pðexðtÞi;j jr;a1Þ
XS�1

w¼0

gðw; rÞ‘t�1ðwÞ

and thus (1) is obtained by
PS�1

r¼0 ‘mþ1ðrÞ.
Disease model. The disease model likelihood

involves three binomial probabilities p0, p1 and p1,
which are the probabilities of being a case for
genotypes 00, f01; 10g and 11, respectively:

pðyijzi;1; zi;2; bÞ ¼ p
yi

zi;1þzi;2
ð1� pzi;1þzi;2

Þ
1�yi :

We follow Minelli et al. [2005] and parameterize p0,
p1 and p2:

logitðp0Þ ¼ b0 � b1=2;

logitðp1Þ ¼ b0 þ b1b2 � b1=2;

logitðp2Þ ¼ b0 þ b1=2:

It is possible to work with the binomial probabilities,
p0, p1, p2 directly and this allows for computational
saving when using conjugate priors. However, it is
more convenient to place constraints on the possible
genetic models using b.

Overall model. We place this model in a Bayesian
framework, with prior distributions p(u), p(a) and p(b).
The full joint probability is then given by

pðu;a; b;X;y; zÞ

¼ pðuÞpðaÞpðbÞ
Yn

i¼1

Y2

j¼1

pðxi;j; zi;jja;uÞ

8<:
9=;

�
Yn

i¼1

pðyijzi; bÞ;

where zi ¼ fzi;1; zi;2g.
The three parameters for the strand model, a0, a1

and b2 are constrained to lie between zero and one.
This constraint is placed on b2 so that we consider
only common genetic models. These include reces-
sive, dominant and co-dominant, which are char-
acterized by b2 values of 0, 1 and 0.5, respectively.
This choice of constraint allows for the rare allele to
be protective (b1o0) but since b2 2 ½0; 1� it does not
allow for rare models of inheritance such as over-
dominance. For the three constrained parameters
two possible noninformative priors are b(1,1) and
b(0.5,0.5). The former is uniform over the interval
while the latter corresponds to the Jeffreys prior for
a binomial distribution and both have been used for
modeling vague prior beliefs about proportions. For
the other two parameters, b0 and b1, dispersed
normal distributions centered at zero may be used as
non-informative priors.

INFERENCE

We wish to infer the values of the unknowns u, z,
a, b from the observed data with particular emphasis
on u and perhaps b. Our Bayesian approach means
that this should be based on the posterior distribu-
tion, the conditional distribution of the unknowns
given the data, X and y:

pðu; z;a; bjX; yÞ

¼ pðujX;yÞpða; b; zju;X;yÞ

¼ pðujX;yÞpðz;ajX;uÞpðbjy; zÞ:

ð2Þ

The second factorization in the above equation uses
the fact that b and y given z are conditionally
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independent of X,u,a. Calculation of (2) is intractable
except by simulation. We therefore calculate
pða; b; zju;X;yÞ by using Markov chain Monte Carlo
(MCMC) techniques. One method for sampling from
complex probability distributions is the Metropolis-
Hastings algorithm [Metropolis et al., 1953;
Hastings, 1970]. We use a deterministic-sweep
Metropolis-Hastings method with random walk
proposals for the five real parameters and sum out
over z. Computational savings are made by using
the calculations defined in strand model for the
strand model.

Since pðz; ajX; uÞ requires calculating and
storing the seeds and since finding a suitable
method for moving about the space of u is
complex, u will be treated as a model indicator.
Independent MCMC runs will be performed, to
both approximate for each u, the marginal likelihood
for each u and the posterior distribution of the
parameters and causal SNP values, given u.
These together determine the full posterior distribu-
tions of all the unknowns. These independent
runs for each u mean that incompatible models
are used for different u but this approximation is
not serious.

Inference about the location of the causal locus is
of primary interest although inference on the
other parameters a, b, is possible. The posterior
distribution of the logistic disease model parameters,
b, with u held fixed, for example at the posterior
mode of u may give insight into the strength
and type of association. Inference on a averaged
over u may give insight into the strength of LD
in a region.

Inference about the location of the causal SNP is
achieved by, pðujX;yÞ / pðuÞpðyjX;uÞpðXjuÞ. The last
factor, pðXjuÞ is not constant due to the insertion of
an unknown z for each u position, which has the
effect of changing the distances between the first
and second halves of the data in the current window
of interest. However, numerical experiments have
shown that the variability of this factor with respect
to u is negligible.

IMPLEMENTATION OF MCMC

Although the strand model is formally defined
along the whole chromosome, attention is limited to
a moving window centered at the current u position.
Limiting attention to a shorter moving window
improves computational speed and is reasonable
since LD is believed to be strong only over relatively
short distances. We have fixed the number of seeds S
and length of window and have run independent
MCMC samplers for each u moving along the
strands.

Inference about u requires the calculation of the
marginal likelihood pðyju;XÞ. We have chosen to use
two direct methods for this calculation both of which

can be implemented by computationally quick
algorithms. The first is motivated by importance
sampling and is the harmonic mean of the posterior
conditional likelihood,

bp1ðyju;XÞ ¼
1

N

XN

t¼1

pðyjaðtÞ; bðtÞ; zðtÞ;u;XÞ�1

" #�1

;

where faðtÞ; bðtÞ; zðtÞgNt¼1 is a sample from the posterior
distribution pða; b; zjX; y;uÞ.

The second method is importance weighted
marginal density estimation [IWMDE; Chen, 1994]
and leads to the estimator,

bp2ðyju;XÞ

¼
1

N

XN

t¼1

wðaðtÞ; bðtÞ; zðtÞju;XÞ

pðyjaðtÞ; bðtÞ; zðtÞ;u;XÞpðaðtÞ; bðtÞ; zðtÞju;XÞ

" #�1

;

where faðtÞ; bðtÞ; zðtÞgNt¼1 is as before and wð�Þ is a
completely known conditional density. Taking wð�Þ
as pða; b; zju;XÞ yields the harmonic mean estimator
given before. These estimators are both derived
from different exact expressions for pðyju;XÞ, with
integrals replaced by averages across the simulation.

CONVERGENCE CHECKING

As with all MCMC-based approaches the conver-
gence of the runs needs to be checked. However, due
to the impractical nature of graphically assessing the
convergence of each parameter chain at each u
location, the usual graphical methods cannot be
used. Instead a statistic is required that can alert us
to possible convergence problems. In order to
minimize the number of such statistics we would
like to focus on the terms forming the empirical
averages bp1ðyju;XÞ and bp2ðyju;XÞ.

This statistic [Gelman and Rubin, 1992; Brooks and
Gelman, 1998] requires K independent runs of length
2T and can be easily and quickly calculated.
Denoting the terms in the summations of bp1ðyju;XÞ
or bp2ðyju;XÞ for chain k at the tth iteration as ckt, then
the variance ratio R can be estimated by

bR ¼ bV
W
;

where

bV ¼ T � 1

T
W þ

K þ 1

K

1

K � 1

XK

k¼1

ð �ck: �
�c::Þ

2;

W ¼
1

KðT � 1Þ

XK

k¼1

X2T

t¼Tþ1

ðckt �
�ck:Þ

2:

For overdispersed starting values bR overestimates R
and should converge to one from above if the chain
converges.
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It is possible to use a correction factor to account
for variability in the variance [Brooks and Gelman,
1998]. This correction factor leads to

bRc ¼
dþ 3

dþ 1
bR ;

where d is approximated by 2bV=dVarðbVÞ. However,
this correction is usually minor as at convergence
d tends to be large [Brooks and Gelman, 1998].

Brooks and Gelman [1998] recommended plotting bR
or bRc across all iterations; in order to minimize
output we have calculated it only at several iteration
indices spread throughout the run, each time using
the second half of all the preceding iterations. This
means that examination of the output to flag
anomalous values is quick and easy.

We have used a long burn-in of 20,000 iterations
followed by a further 30,000 iterations, to ensure that
the majority of the chains have no convergence
problems. While once two or more independent
samplers have been run, bR or bRc can be calculated to
assist with identifying those chains that show a lack
of convergence. If necessary the model has been
re-run and all results given are from fully converged
chains.

WINDOW LENGTH AND CHOICE OF SEEDS

Choosing the length of window and the number of
seeds are both effectively model-selection problems,
but they are computationally burdensome. For the
applications described in the fifth section our model
appears robust to different window lengths and
number of seeds.

Several different ways of choosing the seeds have
been explored. We are currently using k-means
clustering to obtain S clusters for each moving

window. The k-means algorithm is run from several
different starting positions to ensure convergence to
a global minimum. Then, since k-means gives the
centroids of the clusters and these are not guaran-
teed to be binary, the final cluster centroids are
rounded to either zero or one and used as the seeds.

APPLICATIONS

HAPMAP-BASED STUDY

We conducted two simulation studies on two
different sections of HapMap Phase 2 data from
Chromosome One of the CEU population. The 60
unrelated individuals from this data set were used
and two subsections of 101 SNPs were chosen. One
nonmonomorphic SNP from each subsection was
chosen to be ‘‘causal’’ and binary phenotypes were
randomly generated. The causal SNP was then
removed from each data set. Four different window
widths of 20, 30, 40 and 50 SNPs were used in the
analyses and for each three seeds were used. The
results obtained are shown graphically in Figures 2
and 3.

These figures show the harmonic mean estimatorbp1 and the IWMDE estimator bp2 for each of the data
sets for each u location studied. The true causal SNP
location is indicated by vertical dashed lines. The
plotted values are approximately proportional to log
posterior probabilities; they are approximate due
to the omission of the term PðXjuÞ as described
in Inference. These estimates show the strength
of association between each loci and the phenotype
of interest. The lower panel shows the log10 P-values
from Fisher’s exact test for a 2� 3 table. With both
analyses, the graphs indicate the relative degree of
support from the data for the hypotheses that the
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Fig. 2. Marginal log likelihood output using the harmonic mean estimator and IWMDE for data set 1 (50 -m-, 40 -& -, 30 -�-, 20 -.-). The

lower panel shows the log10 values of the P-values from the Fisher’s exact test for a 2� 3 table. The location of the causal SNP is denoted

by the vertical dashed line. SNP, single nucleotide polymorphism; IWMDE, importance weighted marginal density estimation. [Color

figure can be viewed in the online issue which is available at www.interscience.wiley.com.]
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corresponding loci are causal. However, P-values
and posterior probabilities are not directly compar-
able, and the graphs cannot be plotted on the same
axes. It might be noted that our Bayesian analysis
tends to separate loci with high support from those
with moderate support rather more clearly.

In the first data set (Fig. 2) both estimators reach
their maximum values near the same location as the
true causal locus. This time the maximum is unique,
probably due to the weak LD in the region covered
by this data set. In the second data set the Fisher
P-values maximum are not maximized at the true
causal locus. A signal is seen at the causal locus
although this is not as strong as some at either end of
the data set.

In the second data set (Fig. 3) both estimators
again reach their maximum values at the same
location as the true causal SNP as indicated by a
dashed vertical line. Due to the strong LD in this
second data set and the small number of individuals
other local maxima are also seen, indicating other

loci that are in LD with the causal locus. The
appearance of these local maxima is exacerbated
by the small number of individuals. The Fisher
P-values also have their maximum at the causal
locus and show a strong signal corresponding to
most of the peaks in our estimators. In both data sets
the results obtained from both estimators are
consistent.

Sensitivity analysis, not shown, showed that the
burn-in period was sufficient for convergence of R.
From the above plots it is clear that the results are
similar across the four different window widths
used and very similar results were also obtained
when increasing the number of seeds used to five.

An important feature of our model-based analysis is
that it provides simultaneous joint inference about all
unknown quantities. As an example, the parameters
of the disease regression model can be estimated. For
the second data set the posterior means (and standard
deviations) are �b0 ¼ 0:3947 ð0:451Þ, �b1 ¼ 1:910 ð1:098Þ
and �b2 ¼ 0:6154 ð0:216Þ. The joint distribution can be
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Fig. 4. Plot showing the posterior distributions of the probabilities of being a case given genotypes f00g, f01; 10g and f11g as denoted by

p0, p1 and p2 for the most likely causal locus as determined by the model. The right-hand plot divides the plotting area into regions

annotated by the size order of the three relative probabilities.
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most clearly plotted by using p0, p1 and p2 as defined
in strand model to be the probabilities of being a case
given genotypes f00g, f01; 10g and f11g, respectively. In
Figure 4 the joint distribution of these binomial
probabilities is plotted for the most likely causal locus
as determined by the model. Figure 4 is best examined
together with looking at the marginal distributions of
b1 and b2, which are shown in Figure 5.

The diagonal lines in Figure 4 correspond to b2 5 0
and 1 as imposed by our model. The corresponding
histogram in Figure 5 shows that the distribution of
b2 is skewed towards one suggesting a near-
dominance disease model. Both the histogram for
b0 and Figure 5 show that there is a high probability
(greater than 97%) that the SNP is not protective.

CYP2D6

The CYP2D6 gene is known to play an important
role in drug metabolism. Hosking et al. [2002]
genotyped 27 SNPs in a 880 kb region flanking the

CYP2D6 gene and identified a 403 kb region of high
LD spanning the CYP2D6 locus (Fig. 6). This data set
has since been used several times to test new
methodology [Morris et al., 2003; Waldron et al.,
2006]. The data set consists of information from 1,018
individuals, 41 of whom were classified as cases due
to their poor drug metabolism.

We used PHASE [Stephens et al., 2001; Stephens
and Donnelly, 2003] to phase the data, and the
resulting data were treated as if this phasing was
fixed. To investigate the effect of uncertainty in the
phasing we ran our model on five different output
files from PHASE. For this data set, due to the small
number of SNPs, one static window of length 27 was
used for all the MCMC runs.

This plot has several interesting features. It shows
a high peak very close to the CYP2D6 locus as
indicated by two vertical dashed lines. The location
of this peak slightly to the left of the CYP2D6 locus is
consistent with other results [Morris et al., 2003;
Waldron et al., 2006]. Association is also found in a
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Fig. 6. Marginal log likelihood output using the harmonic mean and IWMDE for the CYP2D6 data set for five independent MCMC
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of the CYP2D6 gene. IWMDE, importance weighted marginal density estimation; MCMC, Markov chain Monte Carlo. [Color figure can

be viewed in the online issue which is available at www.interscience.wiley.com.]
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region 0.1 Mb to the left of the CYP2D6 gene but in
strong LD with it, this association has also been
noted in other work. Three Fisher’s P-values are
particularly strong, one of which is very close to the
causal locus; however, this is not the strongest signal
seen from the P-values.

DISCUSSION

In this paper we have described a general method
to search for causal loci in GWAS, allowing for and
exploiting LD between nearby SNPs. This latent seed
model uses hidden Markov models (HMMs) to
describe the observed patterns seen in SNP data
and is set in a Bayesian framework allowing
simultaneous coherent inference about the position
of the causal locus, and other parameters including
those predicting disease status. Results from several
data sets, both with real and simulated phenotypes
are very encouraging.

Although this method will always be computa-
tionally intensive due to requiring a large number of
MCMC simulations this is justified by the richness of
the resulting conclusions. In any case, several factors
mitigate the computational load. This is maintained
to be linear in the number of loci examined, through
use of a finite window centered on each locus.
Further, the ever-increasing speed of computers and
the fact that the independent samplers are suited to
being run on parallel processors, its computational
intensity is not seen as being prohibitive.

Recently several methods for analyzing data from
GWAS have been published, including work by
Morris [2006], Waldron et al. [2006] and Verzilli et al.
[2006]. Morris [2006] used a Bayesian partition
model for clustering haplotypes and then used a
Bayes factor to reflect the strength of evidence that
the disease is associated with polymorphisms in the
candidate region. Waldron et al. [2006] also defined
haplotype clusters and then used these clusters to
predict the genotype at a particular locus that can
then be tested for association with the phenotype.
Verzilli et al. [2006] used a Bayesian graphical model
to locate causal SNPs in a very computationally
efficient way.

Various other authors have recently published
independent work specifically using HMMs in the
analysis of different aspects of data from GWAS.
Scheet and Stephens [2006] and Rastas et al. [2005]
have focused on using HMMs primarily to phase
the data and to impute missing genotype values.
They used the idea of modeling clustering member-
ship along a chromosome based on an HMM and
used an Expectation-Maximization algorithm for
maximum likelihood estimation of the causal locus.
In these papers, the model-selection problem of
choosing the number of clusters/seeds is treated
differently: Scheet and Stephens [2006] used a cross-
validation approach while Rastas et al. [2005]

regarded the number as fixed. Our decision to use
a discrete parameter model for the SNP positions is
analogous with Rastas et al. [2005]. Scheet and
Stephens [2006] do allow for the possibility of a
continuous parameter scale; however, they report no
improvement in performance over the discrete
parameter scale.

Kimmel and Shamir [2005] examined the phasing
of the data and the imputation of missing values, as
well as predicting phenotypes. For the latter, a
particular locus is chosen and this SNP is regarded
as the phenotype, instead of an SNP predictor. A
cross-validation method is then used to predict each
individual’s phenotype individually when all other
individual’s phenotypes are known.

We believe that our model is a promising avenue
of approach for the analysis of GWAS and despite its
computational intensity it shows good performance.
It is also easily elaborated to incorporate missing and
unphased data, environmental variables and con-
tinuous phenotypes as well as controlling for
population substructure that will make it applicable
to more general GWAS data.
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