
Using gaussian mixtures with unknownnumber of components for mixed modelestimationLaurence Watier1, Sylvia Richardson1 and Peter J Green21 Institut National de la Sant�e et de la Recherche M�edicale U170, 16 avenue PaulVaillant Couturier 94807 Villejuif Cedex, France (watier@vjf.inserm.fr)2 Department of Mathematics, University of Bristol, University Walk, Bristol,BS81TW, United KingdomAbstract: Hierarchical mixed models are used to account for dependence be-tween correlated data, in particular dependence created by a group structurewithin the sample. In such models, the correlation between observations is mod-elled by including, in the regression model, group-indexed parameters regarded asrandom variables, so called random e�ects. Gaussian distributions are commonlyused for the random e�ects. However, this choice places a strong constraint onthe shape of the random parameter distribution.In this presentation, we focuson misspeci�cation in mixed model with random intercept, a commonly usedmodel in epidemiology. We propose to model the prior distribution of the ran-dom intercept by gaussian mixtures with an unknown number of components in aBayesian framework. This methodology has recently been developed by Richard-son & Green (1997) to analyse heterogeneous data. Another use of gaussian mix-tures with unknown number of components is that of density estimation.Keywords: Mixed models; Bayesian estimation; gaussian mixtures; Misspeci�-cation.1 IntroductionThe inuence of misspeci�cation in random e�ects' distributions was stud-ied by Neuhaus et al (1992) for logistic mixed model. These authors haveshown cases of non consistency for �xed and random parameter estima-tion. The use of �nite mixture for modelling random e�ects' distribution inlinear mixed model has recently been proposed. Verbeke & Lesa�re (1996)used empirical Bayes estimation and de�ned the number of components ofthe mixture by a test. Magder & Zeger (1996) used Maximum Likelihoodestimation and de�ned constraints on the variances to enforce smoothnessof the distribution. Modelling the prior distribution of the random inter-cept by gaussian mixtures with an unknown number of components in aBayesian framework is an appealing alternative. It requires to introducean additional hierarchical level to the mixed model which comprises the



2 Using gaussian mixtures with unknown number of components for mixed model estimationunknown number of components and the mixture component parametersfor the random intercept distribution.2 Formulation of the model :We use the notations :- i group index, i = 1 to n- j observation index in a group, j = 1 to Ji- Ji size of group i- Yij known outcome of observation j in group i- Uij known covariates for observation j in group i- �i random intercept- � regression parameters (�xed e�ects)The covariate subscripts for U and � are suppressed in order not to over-burden the notation.The complete model is de�ned by two submodels which are linked throughtheir common parameters f�ig� Regression model [YijjUij; �i; �] = [Yijj�ij] where �ij = �UTij + �i,with associated conditional independence assumptions of the [Yijj�ij]for each i and j,� Mixture model for �i :�i � kXp=1wpf(�j�p) independently for i = 1; 2; : : : ; nwith f(�j�) � N (�p; �2p) and f�pg; fwpg; k unknown parameters.The hierarchical formulation of the mixture model introduces latent al-location variables zi indicating to which mixture component the randomintercept �i belongs.



Watier, L. Richardson, S. and Green, P.J. 3The graphical structure of the model can be represented by the fol-lowing Directed Acyclic Graph :
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observations jwhere �p = f�p; �2pg.The joint distribution is given by :[�][� ][k][�jk][wjk][zjw; k]Yi [�ij�; z]Yij [Yijj�ij; � ]�ij = �UTij + �iWe use weakly informative hyperpriors, normal priors for �p, and gammapriors for ��2p , which are based on a notional range of values of f�ig (seeRichardson & Green, 1997).As k (the unknown number of mixture components) is altered, the es-timation of the posterior distribution uses reversible jump MCMC withdimension-changing moves based on splitting/merging adjacent compo-nents while preserving their overall \combined shape" (Green, 1995). Movesfor updating the �xed e�ects or the component parameters are performedeither by Gibbs sampling or by using random walk Metropolis moves.3 Simulation studyMisspeci�cation of the random intercept distribution, for linear and logisticmixed model, and its consequences for �xed and random e�ects estimationare studied by simulations. These simulations will also allow an assessmentof the performance of our proposed method in identifying the shape of therandom intercept distribution.



4 Using gaussian mixtures with unknown number of components for mixed model estimation3.1 Linear model[Yijj�] � N (�i + �UTij ; �2) i = 1; ::; n; j = 1; ::; Jiequivalently Yij �Pkp=1 wpN (�p + �UTij ; �2p + �2).In this case, the joint model is a gaussian mixtures with a particular struc-ture on the components mean and variances. Parameters values for the sim-ulations where inspired by paper of Magder & Zeger (1996).We have chosena case where the value for the ratio V ar(�i)=�2 is equal to 0.5 rather thanthe value of 1.0 considered in Magder & Zeger because a previous analysis(Watier, Richardson & Green, 1998) has indicated that the performance ofour method is closely linked to this ratio (results not shown).The data sets consist of 180 clusters, with sizes varying from 1 to 6 (a totalof 540 observations are obtained). Two �xed e�ects � = (�1; �2) = (2; 5)are introduced. The covariate Uij1 linked with �1 di�ers within group incontrast to Uij2 which it is constant within group. Uij1 are simulated asindependent standard gaussian random variables, whereas the values ofUij2 are equal to zero for 90 clusters and to one for the others. The errorterm in the regression is an independant gaussian random vector with meanzero and variance 2.Two di�erent distributions, fl, for the random intercept �i were consideredf1 : �i � N (0; 22)f2 : �i � f0:25N (14;p102) + 0:75�24gcThe multiplicative constant term c = 4=p109 is chosen to ensure that f2has a variance equal to that of f1.A total of 20 simulations were done for each of the two cases. For each sim-ulation, runs of 70 000 iterations of MCMC algorithm were obtained. Ascan be seen on Figure 1, there is a reasonable convergence of the posteriorprobability of k after a burn-in period. From these runs, parameters esti-mates (posteriors means, posterior standard deviations) where computedfrom the last 50 000 iterations. The results presented below are the aver-age of posterior means and posterior standard deviation (SD) over the 20simulations and the mean square error (MSE). For the sake of comparison,besides using our model with the mixture prior for �i, we also analysed thedata using a standard gaussian prior for �i.- Results for �xed e�ectsAnalysis with gaussian priorfl �̂1 SD MSE �̂2 SD MSE �̂ SD MSEf1 2.00 .073 .003 5.09 .328 .113 1.43 .053 .002f2 2.00 .072 .004 5.09 .325 .104 1.42 .053 .003



Watier, L. Richardson, S. and Green, P.J. 5Analysis with gaussian mixture priorfl �̂1 SD MSE �̂2 SD MSE �̂ SD MSEf1 1.99 .072 .003 5.10 .331 .114 1.43 .053 .002f2 2.01 .072 .003 4.95 .248 .070 1.42 .053 .003For the two prior models, posterior means for �xed parameters are close totheir true values. Posterior standard deviations and MSE are also similarbetween the two priors models, except for the parameter �2 in the caseof random intercept distribution simulated with f2. In this case, the useof a gaussian mixture prior resulted in a 24% decrease of the posteriorstandard deviation for �2 and a 33% decrease of the corresponding MSE.This remark is in accordance with Magder and Zeger. It is important tonote that using a mixture when the random intercept is gaussian (casef1), which is a substantial overparametrization, does not lead to a poorerperformance.- Results for the random intercept distributionWith the gaussian prior, posterior mean values for the parameters (�; �)are respectively equal to -0.17 and 1.97 for the distribution f1, estimatesare close to the original values and identical to the ones obtained withmixture prior when k = 1 (see Table below).In the table below, average results obtained with the gaussian mixtureprior are shown. Only components with probability greater than 10% areindicated. gaussian mixture priorfl k p(kjy) ŵ �̂ �̂f1 1 .673 1 -0.17 1.972 .193 .52 -1.23 1.78.48 1.01 1.81f2 2 .541 .68 1.40 0.81.32 5.11 1.383 .269 .52 0.92 0.77.28 3.24 1.02.20 6.11 1.134 .115 .40 0.39 0.71.28 2.32 0.84.19 4.31 0.94.13 6.97 0.97In the case of f1 one sees a high probability on k = 1. Posterior densityestimate of the mixture is represented in Figure 1. As expected, gaussian



6 Using gaussian mixtures with unknown number of components for mixed model estimationmixtures with unknown number of components gave a good �t to the sim-ulated mixing distribution f2, using between 2 and 4 normal components.3.2 Logistic modellogit pij = �i + �UTij ; i = 1; ::; n; j = 1; ::; JThe data sets consist of 100 clusters with size 10. Two �xed e�ects � =(�1; �2) = (:5; 1) are introduced. The covariate Uij1 linked with �1 di�erswithin group in contrast to Uij2 which is constant within group. Uijk; fk =1; 2g are independent standard gaussian random variables. The randomintercept distribution is simulated from an asymmetric mixture :�i � 0:50N (�2:0; (:5)2) + 0:5N (2; 22)As for linear model, a total of 20 simulationswere done. For each simulation,runs of 300 000 iterations of MCMC algorithm were obtained because wefound that in this case the convergence was slower. In fact in the 20 simula-tions we found that in about half the cases, the algorithm did not convergewell. On Figure 1, we see a case where there is stability convergence ofthe posterior probability of k after a burn-in period. From these runs, pa-rameters estimates (posteriors means, posterior standard deviations) wherecomputed from the last 150 000 iterations. The results presented below aresimilar to those described for the linear model. For the sake of comparison,besides using the mixture prior for �i, we also used a standard gaussianprior for �i in the analysis.- Results for �xed e�ectsAnalysis �̂1 SD MSE �̂2 SD MSEgaussian prior 0.53 .105 .016 1.08 .322 .105gaussian mixture prior 0.53 .106 .016 1.09 .288 .068For the two prior models, posterior means for �xed parameters are close totheir true values. Posterior standard deviation and MSE are similar betweenthe two priors models, except for the parameter �2. Again we see that theuse of a gaussian mixture prior resulted in a 11% decrease of the posteriorstandard deviation for �2 and a 35% decrease of the corresponding MSE.



Watier, L. Richardson, S. and Green, P.J. 7- Results for the random intercept distributionIn the table below, average results obtained with gaussian mixture priorare shown for k = 2. gaussian mixture priork p(kjy) ŵ �̂ �̂2 .291 .61 -1.77 1.38.39 4.33 1.87Over the 20 simulations, the gaussian mixture prior did not recover wellthe underlying true random e�ect distribution. However, in the cases werethe algorithm converge, the 2 components were reasonably well estimated(see the Figure 1). A previous analysis (Watier, Richardson & Green, 1998)has indicated that the performance for the logistic model is conditioned,notably, by the cluster size. Indeed we found that the underlying randome�ect distribution is well recovered for cluster size equal to 50 (results notshown). Posterior density estimate of the random intercept in a case ofgood convergence can be appreciated in Figure 1.
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Figure 1 : For one simulation (a) Cumulative occupancy fractions (b) Com-parison of simulated random intercept distribution (Histogramm) and pos-terior density estimate of the mixture.



8 Using gaussian mixtures with unknown number of components for mixed model estimation4 ConclusionFor linear and logistic mixed models, our simulations did not shown an im-portant e�ect of misspeci�cation on �xed e�ect associated with covariatesdi�ering within cluster. This is not true when the covariates are constantwithin cluster, for which the gaussian mixture prior improves the resultswith a decrease in posterior standard deviation as well as the MSE. Ifthe interest is in the shape of the between groups variability, analyses withstandard gaussian priors are not, for the linear model, appropriate and mix-ture priors are a viable alternative. For the logistic model, convergence forgaussian mixture prior necessitates long runs. To recover the true randomintercept distribution large number of cluster size is needed.ReferencesGreen P. J. (1995). Reversible jump Markov chain Monte Carlo computa-tion and Bayesian model determination. Biometrika 82, 711-732.Magder L. S. and Zeger S. L. (1996). A Smooth Nonparametric Estimateof a Mixing Distribution Using Mixtures of Gaussians Journal of theAmerican Statistical Association 91, 1141-1151.Neuhaus J. M., Hauck W. W. and Kalbeisch J. D. (1992). The e�ects ofmixture distribution misspeci�cation when �tting mixed-e�ects logis-tic models. Biometrika 79, 755-762.Richardson S. and Green P. J. (1997). On Bayesian Analysis of Mixtureswith Unknown Number of Components. Journal of the Royal Statis-tical Society B 59, 731-792.Verbeke G. and Lesa�re E. (1996). A Linear Mixed-E�ects Model WithHeterogeneity in the Random-E�ects Population. Journal of the Amer-ican Statistical Association 91, 217-221.Watier L., Richardson S. and Green P. J. (1998). Modelling random e�ectdistribution in mixed models using gaussian mixtures. XIXth Inter-national Biometrics Conference IBC98, Cape Town, December 1998.


