Problems I.

1. For each of the following pairs of polynomials f and g, (i) find the quotient and remainder on dividing g by f; (ii) use the Euclidean Algorithm to find the highest common factor h of f and g; (iii) find polynomials a and b with the property that $h = af + bg$.
 (a) $g = t^7 - t^3 + 5$, $f = t^3 + 7$ over \mathbb{Q};
 (b) $g = 4t^3 - 17t^2 + t - 3$, $f = 2t + 5$ over \mathbb{Q}.

2. For each of the following pairs of polynomials f and g, (i) find the quotient and remainder on dividing g by f; (ii) use the Euclidean Algorithm to find the highest common factor h of f and g; (iii) find polynomials a and b with the property that $h = af + bg$.
 (a) $g = t^3 + 2t^2 - t + 3$, $f = t + 2$ over \mathbb{F}_5;
 (b) $g = t^7 - 4t^6 + t^3 - 4t + 6$, $f = 2t^3 - 2$ over \mathbb{F}_7.

3. (a) Show that $t^3 + 3t + 1$ is irreducible in $\mathbb{Q}[t]$.
 (b) Suppose that α is a root of $t^8 + 3t + 1$ in \mathbb{C}. Express α^{-1} and $(1 + \alpha)^{-1}$ as linear combinations, with rational coefficients, of 1, α and α^2.
 (c) Is it possible to express $(1 + \alpha)^{-1}$ as a linear combination, with rational coefficients, of 1 and α? Justify your answer.

4. (a) Show that the polynomial $t^2 + t + 1$ is irreducible in $\mathbb{F}_2[t]$.
 (b) Give a complete list of the coset representatives of the quotient ring $\mathbb{F}_2[t]/(t^2 + t + 1)$.
 (c) For each of the non-zero elements α of $\mathbb{F}_2[t]/(t^2 + t + 1)$, determine the least integer n (if one exists) for which $\alpha^n = 1$.

5. Suppose that $L : K$ is a field extension, and that K_1 and K_2 are two intermediate fields between K and L satisfying the condition that $L = K(K_1, K_2)$. Show that $[L : K] \leq [K_1 : K][K_2 : K]$.