Galois Theory problems, #2.

1. Let \(\mathbb{Q} \subset \mathbb{Q}(\alpha) \) be a simple extension where the minimal polynomial of \(\alpha \) is \(t^4 + 2t - 2 \). Calculate the minimal polynomials of \(\alpha - 1 \) and \(\alpha^2 + 1 \) over \(\mathbb{Q} \) and express their inverses in \(\mathbb{Q}(\alpha) \) in the form \(a + b\alpha + c\alpha^2 \) with \(a, b, c \in \mathbb{Q} \).

2. Is \(\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}) \) a simple extension of \(\mathbb{Q} \)?

3. Find all irreducible quadratics over \(\mathbb{Z}_3 \) and then construct all possible extensions of \(\mathbb{Z}_3 \) by an element with quadratic minimal polynomial. How many elements do these extensions have? How many isomorphism classes of extensions does one get in this way?

4. Construct a field with 4 elements and a field with 8 elements.

5. (Quadratic extensions)

(a) Let \(K \) be a field of characteristic not equal to 2 and let \(m \) be a quadratic polynomial over \(K \). Show that \(m \) has a zero in a simple extension \(K(\alpha) \) of \(K \) where \(\alpha^2 = k \in K \). Thus allowing ‘square roots’ \(\sqrt{k} \) enables us to solve all quadratic equations over \(K \).

(b) Show that for fields of characteristic 2 there exist quadratic equations which cannot be solved by adjoining square roots of elements of the field. (Hint: try \(\mathbb{Z}_2 \)).

(c) Show that we can solve all quadratic equations over a field of characteristic 2 if we allow ourselves not only to adjoin square roots of elements but ‘generalised’ square roots \(\sqrt{k} \) defined to be solutions of the equation \(t^2 + t = k \).

6. Suppose \(L = K(\alpha, \beta) \), where the degrees of the minimal polynomials of \(\alpha \) and \(\beta \) over \(K \) are relatively prime integers \(m \) and \(n \). Show that \([L : K] = mn \).

7. Suppose \(L \supset K \) and \(\alpha \) and \(\beta \) are elements of \(L \) such that \(\alpha \beta \) and \(\alpha + \beta \) are algebraic over \(K \). Deduce that \(\alpha \) and \(\beta \) are algebraic over \(K \).

8. (a) Show that if \(p \) is a prime number, then for every positive integer \(n \), the polynomial \(x^n - p \) is irreducible over \(\mathbb{Q} \).

(b) By making the substitution \(y = x - 1 \), or otherwise, show that when \(p \) is a prime number, the polynomial \(t^{p-1} + t^{p-2} + \ldots + t + 1 \) is irreducible over \(\mathbb{Q} \).