Galois Theory problems, #3.

1. Show directly that the only subfields of \(\mathbb{Q}(\sqrt{2}, \sqrt{3}) \) are \(\mathbb{Q}, \mathbb{Q}(\sqrt{2}), \mathbb{Q}(\sqrt{3}), \mathbb{Q}(\sqrt{6}) \), and \(\mathbb{Q}(\sqrt{2}, \sqrt{3}) \).

2. Describe the Galois groups of the following extensions \(L \supset K \):

 (a) \(\mathbb{Q}(\sqrt{2}) \supset \mathbb{Q} \).

 (b) \(\mathbb{Q}(\alpha) \supset \mathbb{Q} \), where \(\alpha \) is the real 5th root of 7.

 (c) \(\mathbb{Q}(\omega) \supset \mathbb{Q} \), where \(\omega = e^{2\pi i} \in \mathbb{C} \).

 (d) \(\mathbb{Z}_2(\alpha) \supset \mathbb{Z}_2 \), where \(\alpha \) has minimal polynomial \(t^3 + t + 1 \).

3. Let \(G \) be the Galois group of \(\mathbb{Q}(\sqrt{2}, \sqrt{3}) \supset \mathbb{Q} \), as calculated in class, and let \(\beta = \sqrt{2} + \sqrt{3} \). Multiply out the polynomial

\[
\prod_{g \in G} (t - g(\beta)).
\]

What do you notice?