Number Theory and Group Theory
Exercise Sheet 3

October 24, 2012

1. Let \(a \) and \(b \) be integers which are not relatively prime. Show that there is a prime number \(p \) such that \(p \) divides both \(a \) and \(b \).

2. Show that any two consecutive perfect squares are relatively prime, i.e. that if \(n \) is a positive integer then \(n^2 \) and \((n+1)^2 \) are relatively prime.

3. (Cataldi 1548–1626) Let \(n \) be a positive integer with \(n \neq 1 \). Suppose that \(n \) is composite (i.e. that \(n \) is not a prime number). Show that there is a prime number \(p \) such that \(p \) divides \(n \) and \(p \leq \sqrt{n} \).

4. Use Question 3 and a calculator to determine whether or not 1763 and 1777 are prime numbers.

5. Find all prime numbers \(p \) such that \(7^p + 4 \) is a perfect square and justify your answer.

6. Let \(n \) be a positive integers such that \(2^n - 1 \) is a prime number. Show that \(n \) is a prime number. (Hint: Suppose that \(a \) and \(b \) are positive integers with \(ab = n \). Use the identity

\[
x^b - 1 = (x - 1)(x^{b-1} + x^{b-2} + \cdots + x^2 + x + 1)
\]

\(to show that 2^n - 1 \) divides \(2^n - 1 \).

7. Use a calculator to show that \(2^{11} - 1 \) is not a prime number. Thus the converse of the result in Question 6 is not true in general, i.e. there is a prime number \(p \) such that \(2^p - 1 \) is not a prime number.