Number Theory and Group Theory
Exercise Sheet 4

October 31, 2012

1. Let n be a positive integer with prime power decomposition $n = p_1^{a_1} \cdots p_r^{a_r}$. Suppose that d takes the form $p_1^{b_1} \cdots p_r^{b_r}$ with b_1, \ldots, b_r integers satisfying $0 \leq b_i \leq a_i$ for all i. Prove that d divides n by exhibiting an integer e such that $de = n$.

2. Prove that there are only finitely many primes of the form $n^2 - 1$ with n an integer. Give a complete list of all such primes.

3. Let a and b be integers with $a = p_1^{a_1} \cdots p_r^{a_r}$ and $b = p_1^{b_1} \cdots p_r^{b_r}$ where p_1, \ldots, p_r are distinct primes and $a_1, \ldots, a_r, b_1, \ldots, b_r$ are non-negative integers. For each i define $m_i = \min\{a_i, b_i\}$ and $M_i = \max\{a_i, b_i\}$.

 (i) Using Proposition 14 of the lecture notes, prove that $(a, b) = p_1^{m_1} \cdots p_r^{m_r}$.

 (ii) Again using Proposition 14, prove that $[a, b] = p_1^{M_1} \cdots p_r^{M_r}$.

 (iii) Establish that for any integers x and y we have the identity $x + y = \min\{x, y\} + \max\{x, y\}$.

 Hence deduce that $(a, b)[a, b] = ab$, or equivalently

 $$[a, b] = \frac{ab}{(a, b)}.$$

1Given a finite set of integers $\{a_1, \ldots, a_r\}$ we denote its smallest and largest elements by $\min\{a_1, \ldots, a_r\}$ and $\max\{a_1, \ldots, a_r\}$, respectively.