FIRST-YEAR GROUP THEORY
SOLUTIONS TO THE EXERCISES FOR SECTIONS 4 AND 5

1. Set \(G = D_3 \) and let the elements of \(G \) be denoted by \(e, a, a^2, b, ab, a^2b \) as usual as in Example 1.21. Then \(G \) has one cyclic subgroup of order 1, which consists of \(e \) only. There are three elements of order 2, namely \(b, ab, a^2b \) and each of these together with \(e \) gives a cyclic subgroup of order 2. The remaining elements \(a \) and \(a^2 \) both have order 3, and together with \(e \) they form the unique cyclic subgroup of order 3. No element of \(G \) has order 6, so that \(G \) itself is a non-cyclic subgroup of \(G \).

2. (1) 1, 3, 5, 9, 11, 13.
(2) Working in \(Z/14Z \) we have \(3^2 = 9, 3^3 = 27 = -1, 3^4 = 3^3.3 = -1.3 = -3, 3^5 = -9, 3^6 = -27 = 1. \) Therefore \(3 \) has order 6 as an element of \(U_{14} \), and because \(U_{14} \) has order 6 it follows that \(U_{14} \) is cyclic and is generated by the element 3.

3. Set \(G = U_{15} \). The elements of \(G \) are 1, 2, 4, 7, 8 = -7, 11 = -4, 13 = -2, 14 = -1. Thus \(G \) has order 8. Working in \(Z/15Z \) we have \(2^4 = 16 = 1 = (-2)^4; 4^2 = 16 = 1 = (-4)^2; 7^2 = 49 = 4 \) so that \(7^4 = 16 = 1 = (-7)^4. \) Hence \(G \) has no element of order 8, so that \(G \) is not cyclic.

4. 0, 4, 8.

5. Set \(G = (Q, +) \), and suppose that \(G \) is cyclic with generator \(x \). Then every element of \(G \) is of the form \(nx \) for some integer \(n \). In particular \(x/2 \in G \), so that \(x/2 = nx \) for some \(n \in Z \). Because every rational number is of the form \(kx \) for some integer \(k \), we have \(x \neq 0 \). This, together with \(x/2 = nx \) for some \(n \in Z \), is a contradiction.

6. Without loss of generality we can suppose that the operations in \(H \) and \(K \) are multiplication. Let \(x \) be a generator of the cyclic group \(G \). We have \(x = (a, b) \) for some \(a \in H, b \in K \). Let \(h \in H \) and set \(g = (h, e) \), where \(e \) is the identity element of \(K \). Because \(g \in G \) and \(G \) is generated by \(x \), we have \(g = x^n \) for some \(n \in Z \). Thus \((h, e) = (a, b)^n = (a^n, b^n) \), so that \(h = a^n \). Therefore every element of \(H \) is a power of \(a \), so that \(H \) is cyclic with generator \(a \).

7. Let \(z \) be the element of \(H \) of order 2, and let \(Z_2 \) consist of the integers 1 and \(-1\) under multiplication. Then there are three elements of order 2 in \(H \times Z_2 \), namely \((z, 1), (z, -1), (e, -1)\) where \(e \) is the identity element of \(H \). The other 12 non-identity elements of \(H \times Z_2 \) have order 4.