3 ORDER OF AN ELEMENT

DEFINITION 3.1: (Order of an element) Let \(G \) be a multiplicatively-written group with identity element \(e \), and let \(x \in G \). Then one of the two following situations must apply to \(x \).

(1) There is no positive integer \(n \) such that \(x^n = e \); when this happens we say that \(x \) has, or is of, infinite order.

(2) There is a positive integer \(n \) such that \(x^n = e \); when this happens we say that \(x \) has finite order, and if \(n \) is the smallest positive integer such that \(x^n = e \) then we say that \(x \) has order \(n \) and write \(\text{ord}(x) = n \).

REMARKS 3.2:

(a) If you are asked to show that an element \(x \) of a group \(G \) has order \(n \) for a given positive integer \(n \), it is not enough to show simply that \(x^n = e \); you must also show that \(n \) is the smallest positive integer with \(x^n = e \). It is a COMMON ERROR to show that \(x^n = e \) and to leave it at that.

(b) Every group has at least one element of finite order, because the identity element has order 1. In fact an element has order 1 if and only if it is the identity element.

EXAMPLE 3.3: As in 1.5 let \(G \) be the multiplicative group which consists of the four complex numbers 1, \(i \), \(-1 \), \(-i\) where \(i^2 = -1 \). To find the order of \(i \) as an element of \(G \) we note that \(i^2 = -1 \neq 1 \), \(i^3 = -i \neq 1 \), and \(i^4 = 1 \). Therefore \(i \) has order 4, because when we go through the powers of \(i \) we have to go to \(i^4 \) before we get the answer 1. Similarly \(-i \) has order 4. But
\((-1)^2 = 1 \) with \(-1 \neq 1 \), so that \(-1 \) has order 2.

EXAMPLE 3.4: As in 1.6 let \(G \) be the multiplicative group of non-zero rational numbers, and let \(x \in G \). Suppose that \(x^n = 1 \) for some positive integer \(n \). Because \(x \) is a non-zero rational number we can only have either \(x = 1 \) or \(x = -1 \). So the only two elements of \(G \) of finite order are 1 and \(-1 \), where \(\text{ord}(1) = 1 \) and \(\text{ord}(-1) = 2 \).

EXAMPLE 3.5: As in 1.13 let \(G \) be the multiplicative group of non-zero elements of \(\mathbb{Z}/5\mathbb{Z} \), i.e. \(G = U_5 \) in the notation of 1.33. Working in \(\mathbb{Z}/5\mathbb{Z} \) we have \(2^2 = 4 \), \(2^3 = 8 = 3 \), \(2^4 = 2.2^3 = 2.3 = 6 = 1 \) so that \(\text{ord}(2) = 4 \); \(3^2 = 9 = 4 \), \(3^3 = 3.4 = 12 = 2 \), \(3^4 = 3.2 = 6 = 1 \) so that \(\text{ord}(3) = 4 \); \(4^2 = (-1)^2 = 1 \) so that \(\text{ord}(4) = 2 \).

EXAMPLE 3.6: As in 1.21 let \(G = D_3 \) with the elements of \(G \) denoted by \(e, a, a^2, b, ab, a^2b \) where \(e \) is the identity element, \(a^3 = e = b^2 \), and \(ab = ba^{-1} \). Then \(a \) and \(a^2 \) have order 3. Also \(b, ab, a^2b \) (geometrically, these are the reflections) have order 2.

EXAMPLE 3.7: As in 1.22 let \(G = D_4 \) with the elements of \(G \) denoted by \(e, a, a^2, a^3, b, ab, a^2b, a^3b \) where \(e \) is the identity element, \(a^4 = e = b^2 \), and \(ab = ba^{-1} \). Then \(a \) and \(a^3 \) have order 4; \(a^2 \) has order 2; the four reflections \(b, ab, a^2b, a^3b \) all have order 2.

EXAMPLE 3.8: The three non-identity elements of the Klein 4-group all have order 2.
EXAMPLE 3.9: Set \(G = (\mathbb{Z}, +) \) and let \(x \in G \). Because we are using additive notation, the element \(x \) has finite order if and only if \(nx = 0 \) for some positive integer \(n \). Clearly in this example \(x \) has finite order if and only if \(x = 0 \).

EXAMPLE 3.10: Set \(G = (\mathbb{Z}/4\mathbb{Z}, +) \). We will use 0, 1, 2, 3 to denote the elements of \(G \). Working in \(\mathbb{Z}/4\mathbb{Z} \) we have 1.1 = 1 ≠ 0, 2.1 = 2 ≠ 0, 3.1 = 3 ≠ 0, 4.1 = 4 = 0 so that \(\text{ord}(1) = 4 \). Also 2.2 = 4 = 0 so that \(\text{ord}(2) = 2 \). We have 2.3 = 6 = 2 ≠ 0, 3.3 = 9 = 1 ≠ 0, 4.3 = 12 = 0 so that \(\text{ord}(3) = 4 \).

PROPOSITION 3.11: Let \(G \) be a multiplicatively-written group and let \(x \) be an element of \(G \) of infinite order. Then the powers of \(x \) are distinct, i.e. if \(i \) and \(j \) are integers such that \(I \neq j \) then \(x^I \neq x^j \).

PROOF: Suppose that \(i \) and \(j \) are integers with \(x^i = x^j \). Without loss of generality we can suppose that \(i \geq j \). Multiplying both sides of the equation \(x^i = x^j \) by \(x^{-j} \) gives \(x^{i-j} = 1 \) where 1 is the identity element of \(G \) and \(i - j \) is a non-negative integer. But \(x \) has infinite order, so that \(i - j \) can not be positive. Therefore \(i - j = 0 \), i.e. \(i = j \).

COROLLARY 3.12: Let \(G \) be a finite group. Then every element of \(G \) has finite order.

PROOF: Let \(x \in G \) and suppose that the operation in \(G \) is multiplication. The powers of \(x \) are elements of the finite set \(G \), so that the powers of \(x \) can not all be distinct. Therefore \(x \) has finite order, by 3.11.

We shall show in Section 7 that if \(G \) is a finite group and \(x \in G \), then the order of \(x \) divides the order (i.e. number of elements of) \(G \).

PROPOSITION 3.13: Let \(G \) be a multiplicatively-written group with identity element 1 and let \(x \) be an element of \(G \) of finite order \(n \).

1. Let \(i \in \mathbb{Z} \). Then \(x^i = 1 \) if and only if \(n \) divides \(i \).

2. Let \(i, j \in \mathbb{Z} \). Then \(x^i = x^j \) if and only if \(n \) divides \(i - j \).

3. The inverse of \(x \) is \(x^{n-1} \).

4. The distinct powers of \(x \) are 1, \(x \), \(x^2 \), ..., \(x^{n-1} \).

PROOF:

1. Let \(i \in \mathbb{Z} \). Suppose firstly that \(n \) divides \(i \), so that \(i = nk \) for some \(k \in \mathbb{Z} \). Then \(x^i = x^{nk} = (x^n)^k = 1^k = 1 \) because \(x^n = 1 \). Conversely suppose that \(x^i = 1 \). By the division algorithm we have \(i = nq + r \) for some \(q, r \in \mathbb{Z} \) with \(0 \leq r < n \). We have \(x^n = 1 \) and \(x^1 = 1 \), so that \(1 = x^i = x^{nq+r} = (x^n)^q x^r = 1^q x^r = x^r \). Thus \(n \) is the smallest positive integer with \(x^n = 1 \), and we have \(x^r = 1 \) with \(0 \leq r < n \). Therefore we must have \(r = 0 \), i.e. \(i = nq \), so that \(n \) divides \(i \).

2. Let \(i, j \in \mathbb{Z} \). Then \(x^i = x^j \) if and only if \(i-j = 1 \). Therefore it follows from (1) that \(x^i = x^j \) if and only if \(n \) divides \(i - j \).

3. We have \(x \cdot x^{n-1} = x^n = 1 = x^{n-1} \cdot x \), so that \(x^{n-1} \) is the inverse of \(x \).
(4) Let y be a power of x, i.e. $y = x^i$ for some $i \in \mathbb{Z}$. We have $i = nq + r$ for some $q, r \in \mathbb{Z}$ with $0 \leq r < n$. Thus $y = x^i = x^nq^r = (x^n)^q x^r$, so that y is one of the elements $1, x, x^2, \ldots, x^{n-1}$. We must also show that the elements 1, x, x^2, \ldots, x^{n-1} are distinct. Suppose that $x^a = x^b$ for some $a, b \in \mathbb{Z}$ with $0 \leq a \leq n-1$ and $0 \leq b \leq n-1$. Without loss of generality we shall suppose that $a \geq b$. We have $x^{a-b} = 1$, where $a - b \in \mathbb{Z}$ and $0 \leq a - b \leq n - 1$. Because n is the smallest positive integer with $x^n = 1$, we must have $a - b = 0$, i.e. $a = b$. This proves that the elements $1, x, x^2, \ldots, x^{n-1}$ are distinct.

THEOREM 3.14: Let G be a multiplicatively-written group with elements x and y of finite orders a and b respectively. Suppose further that $xy = yx$ and that a and b are relatively prime. Then xy has order ab.

PROOF: Because $xy = yx$ we have $(xy)^n = x^ny^n$ for every positive integer n. Note that $x^n = 1 = y^b$ where 1 is the identity element of G. Hence $(xy)^n = x^{na}y^{na} = (x^a)^n(y^b)^n = 1^n1^n = 1$. Because $(xy)^{ab} = 1$ we know that xy has finite order n for some positive integer n and that n divides ab (see 3.13(1)). Since ord$(xy) = n$ we have $(xy)^n = 1$. Therefore $1 = ((xy)^n)^a = (xy)^na = x^{na}y^{na} = (x^a)^ny^{na} = 1^n(y^b)^n = y^{na}$. Thus $y^{na} = 1$ where y has order b, so that b divides na (see 3.13(1) again). But b and a are relatively prime, so it follows that b divides n. Similarly a divides n. So a and b are relatively prime and they both divide n, from which it follows that ab divides n (this is because $n = ac$ for some $c \in \mathbb{Z}$, so that b divides ac with hcf$(b, a) = 1$ so that b divides c and hence ab divides ac). Thus the positive integers ab and n divide each other, so that $n = ab$ as required.

REMARKS 3.15: Let G be a group. If G is Abelian then the elements of G of finite order form a subgroup of G known as the torsion subgroup of G (you do not need to remember this). But if G is not Abelian then the set of elements of G of finite order may not be closed under multiplication, and hence in general this subset is not a subgroup of G.

DEFINITION 3.16: (Commuting elements) Elements x and y of a multiplicatively-written group are said to commute, or to commute with each other, if $xy = yx$.

Thus one of the assumptions in the statement of 3.14 was that x and y commute, and if this assumption is dropped then 3.14 may be false.