Galois Theory solutions, #3.

1. We’ve seen that every element of \(\mathbb{Q}(\sqrt{2}, \sqrt{3}) \) has the form \(a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6} \), where \(a, b, c, d \in \mathbb{Q} \) (Use the proof of the Tower Law). Let \(K \) be a subfield of \(\mathbb{Q}(\sqrt{2}, \sqrt{3}) \). Then \(1 \in K \) implies that \(\mathbb{Q} \in K \). So suppose that \(K \neq \mathbb{Q} \). It suffices to show that \(K \) contains \(\sqrt{2}, \sqrt{3}, \) or \(\sqrt{6} \) (because if, say, \(\sqrt{2} \in K \) then \(\mathbb{Q}(\sqrt{2}) \subset K \subset \mathbb{Q}(\sqrt{2}, \sqrt{3}) \) which implies by the Tower Law that \(K = \mathbb{Q}(\sqrt{2}) \) or \(K = \mathbb{Q}(\sqrt{2}, \sqrt{3}) \). If not, then it must contain an element of the form \(x = b\sqrt{2} + c\sqrt{3} + d\sqrt{6} \) where at least 2 of \(b, c, d \) are nonzero. Squaring this and subtracting a rational number, we get that \(y = 3cd\sqrt{2} + 2bd\sqrt{3} + bc\sqrt{6} \in K \). If exactly 2 of \(b, c, d \) are nonzero then \(y \) is a nonzero multiple of \(\sqrt{2}, \sqrt{3}, \) or \(\sqrt{6} \), a contradiction. If all are nonzero then \(x = y - (3cd/b)x = c\sqrt{3} + d\sqrt{6}, \) where \(c = (2b^2 - c^2)d/b \neq 0 \), and we may repeat the argument with \(x' \) in place of \(x \).

2. (a) Any \(\mathbb{Q} \)-automorphism of \(\mathbb{Q}(\sqrt{2}) \) sends \(\sqrt{2} \) to \(\pm\sqrt{2} \). So the Galois group consists of the identity automorphism and the automorphism \(a + b\sqrt{2} \mapsto a - b\sqrt{2} \).

(b) If \(\sigma \in \text{Gal}(\mathbb{Q}(\alpha) \supset \mathbb{Q}) \), then \(\sigma(\alpha) \) is a 5th root of \(7 \), and real as it is contained in \(\mathbb{Q}(\alpha) \) which is contained in \(\mathbb{R} \). But there is a unique real 5-th root of \(7 \), so \(\sigma(\alpha) = \alpha \). Because every element of \(\mathbb{Q}(\alpha) \) is a polynomial in \(\alpha \) it follows that the only element of the Galois group is the identity automorphism.

(c) \(\omega \) has minimal polynomial \(f = t^4 + t^3 + t^2 + t + 1 \) and the other zeroes of \(f \) in \(K(\omega) \) are \(\omega^2, \omega^3, \) and \(\omega^4 \). Any element of \(\sigma \in \text{Gal}(\mathbb{Q}(\omega) : \mathbb{Q}) \) is determined by its value on \(\omega \), which by Lemma 48 must be one of the four zeroes of \(f \), and by (1.3) one actually gets a \(\sigma \) such that \(\sigma(\omega) = \omega^2 \). Then \(\sigma^2(\omega) = \omega^4, \sigma^3(\omega) = \omega^3, \) and \(\sigma^4(\omega) = \omega \), so the Galois group is a cyclic group of order 4.

(d) We have
\[
(\alpha^2)^3 + \alpha^2 + 1 = (\alpha^3)^2 + \alpha^2 + 1 = (\alpha^3 + \alpha + 1)^2 = 0
\]
and
\[
(\alpha^4)^3 + \alpha^4 + 1 = (\alpha^3)^4 + \alpha^4 + 1 = (\alpha^3 + \alpha + 1)^4 = 0,
\]
so the zeroes of \(t^4 + t + 1 \) in \(\mathbb{Z}_2(\alpha) \) are \(\alpha, \alpha^2, \) and \(\alpha^4 \). Any element of \(\sigma \in \text{Gal}(\mathbb{Z}_2(\alpha) \supset \mathbb{Z}_2) \) is determined by its value on \(\alpha \), which by Lemma 48 must be one of the zeroes of \(f \), and by (1.3) one actually gets \(\sigma \) and \(\tau \) such that \(\sigma(\alpha) = \alpha^2 \) and \(\tau(\alpha) = \alpha^4 \). So \(G = \{ id, \sigma, \tau \} \) has order 3 and therefore is cyclic.

1
3. We have

\[
(t - \text{id}(\sqrt{2} + \sqrt{3})) \left(t - \sigma_1(\sqrt{2} + \sqrt{3}) \right) \left(t - \sigma_2(\sqrt{2} + \sqrt{3}) \right) \left(t - \sigma_3(\sqrt{2} + \sqrt{3}) \right)
\]

\[
= \left(t \left(\sqrt{2} + \sqrt{3} \right) \right) \left(t - \left(-\sqrt{2} + \sqrt{3} \right) \right) \left(t - \left(\sqrt{2} - \sqrt{3} \right) \right) \left(t - \left(-\sqrt{2} - \sqrt{3} \right) \right)
\]

\[
= \left(t + (\sqrt{2} + \sqrt{3}) \right) \left(t - (\sqrt{2} + \sqrt{3}) \right) \left(t + (\sqrt{2} - \sqrt{3}) \right) \left(t - (\sqrt{2} - \sqrt{3}) \right)
\]

\[
= \left(t^2 - (5 + 2\sqrt{6}) \right) \left(t^2 - (5 - 2\sqrt{6}) \right)
\]

\[
= t^4 - 10t^2 + 1.
\]

This is the minimal polynomial of $\sqrt{2} + \sqrt{3}$ over \mathbb{Q}.